Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385489093> ?p ?o ?g. }
- W4385489093 abstract "In this work, we consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints. Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration. We formulate a stochastic network optimization problem for designing a dynamic scheduling policy that maximizes the time-average data importance from scheduled user sets subject to energy consumption and latency constraints. Our proposed algorithm based on the Lyapunov optimization framework outperforms alternative methods without considering time-varying data importance, especially when the generation of training data shows strong temporal correlation." @default.
- W4385489093 created "2023-08-03" @default.
- W4385489093 creator A5032769690 @default.
- W4385489093 creator A5043552696 @default.
- W4385489093 creator A5060076921 @default.
- W4385489093 date "2023-06-04" @default.
- W4385489093 modified "2023-09-26" @default.
- W4385489093 title "Dynamic Scheduling For Federated Edge Learning With Streaming Data" @default.
- W4385489093 cites W1996785854 @default.
- W4385489093 cites W2137152139 @default.
- W4385489093 cites W3045657448 @default.
- W4385489093 cites W3090615085 @default.
- W4385489093 cites W3093755649 @default.
- W4385489093 cites W3111179237 @default.
- W4385489093 cites W3112078625 @default.
- W4385489093 cites W3126228234 @default.
- W4385489093 cites W3136022984 @default.
- W4385489093 cites W3163105316 @default.
- W4385489093 cites W3163739719 @default.
- W4385489093 cites W3185547071 @default.
- W4385489093 cites W3189532120 @default.
- W4385489093 cites W3191468586 @default.
- W4385489093 cites W3192661977 @default.
- W4385489093 cites W3206219421 @default.
- W4385489093 cites W3207233526 @default.
- W4385489093 cites W3211791834 @default.
- W4385489093 cites W3212431702 @default.
- W4385489093 cites W4210547184 @default.
- W4385489093 cites W4210758839 @default.
- W4385489093 cites W4226502413 @default.
- W4385489093 cites W4319663761 @default.
- W4385489093 cites W4320029413 @default.
- W4385489093 doi "https://doi.org/10.1109/icasspw59220.2023.10193322" @default.
- W4385489093 hasPublicationYear "2023" @default.
- W4385489093 type Work @default.
- W4385489093 citedByCount "0" @default.
- W4385489093 crossrefType "proceedings-article" @default.
- W4385489093 hasAuthorship W4385489093A5032769690 @default.
- W4385489093 hasAuthorship W4385489093A5043552696 @default.
- W4385489093 hasAuthorship W4385489093A5060076921 @default.
- W4385489093 hasBestOaLocation W43854890932 @default.
- W4385489093 hasConcept C101403955 @default.
- W4385489093 hasConcept C107568181 @default.
- W4385489093 hasConcept C111919701 @default.
- W4385489093 hasConcept C11413529 @default.
- W4385489093 hasConcept C120314980 @default.
- W4385489093 hasConcept C126255220 @default.
- W4385489093 hasConcept C137836250 @default.
- W4385489093 hasConcept C138236772 @default.
- W4385489093 hasConcept C154945302 @default.
- W4385489093 hasConcept C162307627 @default.
- W4385489093 hasConcept C18903297 @default.
- W4385489093 hasConcept C191544260 @default.
- W4385489093 hasConcept C206729178 @default.
- W4385489093 hasConcept C2777052490 @default.
- W4385489093 hasConcept C2778456923 @default.
- W4385489093 hasConcept C2780165032 @default.
- W4385489093 hasConcept C31258907 @default.
- W4385489093 hasConcept C33923547 @default.
- W4385489093 hasConcept C37935115 @default.
- W4385489093 hasConcept C41008148 @default.
- W4385489093 hasConcept C5119721 @default.
- W4385489093 hasConcept C76155785 @default.
- W4385489093 hasConcept C79403827 @default.
- W4385489093 hasConcept C79974875 @default.
- W4385489093 hasConcept C82876162 @default.
- W4385489093 hasConcept C86803240 @default.
- W4385489093 hasConceptScore W4385489093C101403955 @default.
- W4385489093 hasConceptScore W4385489093C107568181 @default.
- W4385489093 hasConceptScore W4385489093C111919701 @default.
- W4385489093 hasConceptScore W4385489093C11413529 @default.
- W4385489093 hasConceptScore W4385489093C120314980 @default.
- W4385489093 hasConceptScore W4385489093C126255220 @default.
- W4385489093 hasConceptScore W4385489093C137836250 @default.
- W4385489093 hasConceptScore W4385489093C138236772 @default.
- W4385489093 hasConceptScore W4385489093C154945302 @default.
- W4385489093 hasConceptScore W4385489093C162307627 @default.
- W4385489093 hasConceptScore W4385489093C18903297 @default.
- W4385489093 hasConceptScore W4385489093C191544260 @default.
- W4385489093 hasConceptScore W4385489093C206729178 @default.
- W4385489093 hasConceptScore W4385489093C2777052490 @default.
- W4385489093 hasConceptScore W4385489093C2778456923 @default.
- W4385489093 hasConceptScore W4385489093C2780165032 @default.
- W4385489093 hasConceptScore W4385489093C31258907 @default.
- W4385489093 hasConceptScore W4385489093C33923547 @default.
- W4385489093 hasConceptScore W4385489093C37935115 @default.
- W4385489093 hasConceptScore W4385489093C41008148 @default.
- W4385489093 hasConceptScore W4385489093C5119721 @default.
- W4385489093 hasConceptScore W4385489093C76155785 @default.
- W4385489093 hasConceptScore W4385489093C79403827 @default.
- W4385489093 hasConceptScore W4385489093C79974875 @default.
- W4385489093 hasConceptScore W4385489093C82876162 @default.
- W4385489093 hasConceptScore W4385489093C86803240 @default.
- W4385489093 hasLocation W43854890931 @default.
- W4385489093 hasLocation W43854890932 @default.
- W4385489093 hasOpenAccess W4385489093 @default.
- W4385489093 hasPrimaryLocation W43854890931 @default.
- W4385489093 hasRelatedWork W2736305332 @default.
- W4385489093 hasRelatedWork W2810084952 @default.
- W4385489093 hasRelatedWork W2945616868 @default.