Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385490569> ?p ?o ?g. }
- W4385490569 endingPage "104465" @default.
- W4385490569 startingPage "104465" @default.
- W4385490569 abstract "Adverse outcome pathway (AOP) networks are versatile tools in toxicology and risk assessment that capture and visualize mechanisms driving toxicity originating from various data sources. They share a common structure consisting of a set of molecular initiating events and key events, connected by key event relationships, leading to the actual adverse outcome. AOP networks are to be considered living documents that should be frequently updated by feeding in new data. Such iterative optimization exercises are typically done manually, which not only is a time-consuming effort, but also bears the risk of overlooking critical data. The present study introduces a novel approach for AOP network optimization of a previously published AOP network on chemical-induced cholestasis using artificial intelligence to facilitate automated data collection followed by subsequent quantitative confidence assessment of molecular initiating events, key events, and key event relationships. Artificial intelligence-assisted data collection was performed by means of the free web platform Sysrev. Confidence levels of the tailored Bradford-Hill criteria were quantified for the purpose of weight-of-evidence assessment of the optimized AOP network. Scores were calculated for biological plausibility, empirical evidence, and essentiality, and were integrated into a total key event relationship confidence value. The optimized AOP network was visualized using Cytoscape with the node size representing the incidence of the key event and the edge size indicating the total confidence in the key event relationship. This resulted in the identification of 38 and 135 unique key events and key event relationships, respectively. Transporter changes was the key event with the highest incidence, and formed the most confident key event relationship with the adverse outcome, cholestasis. Other important key events present in the AOP network include: nuclear receptor changes, intracellular bile acid accumulation, bile acid synthesis changes, oxidative stress, inflammation and apoptosis. This process led to the creation of an extensively informative AOP network focused on chemical-induced cholestasis. This optimized AOP network may serve as a mechanistic compass for the development of a battery of in vitro assays to reliably predict chemical-induced cholestatic injury." @default.
- W4385490569 created "2023-08-03" @default.
- W4385490569 creator A5002749842 @default.
- W4385490569 creator A5018002605 @default.
- W4385490569 creator A5018211217 @default.
- W4385490569 creator A5022384436 @default.
- W4385490569 creator A5034172499 @default.
- W4385490569 creator A5038739123 @default.
- W4385490569 creator A5040659202 @default.
- W4385490569 creator A5045811224 @default.
- W4385490569 creator A5045862213 @default.
- W4385490569 creator A5048858422 @default.
- W4385490569 creator A5061472749 @default.
- W4385490569 creator A5068229635 @default.
- W4385490569 creator A5074433514 @default.
- W4385490569 creator A5092439682 @default.
- W4385490569 date "2023-09-01" @default.
- W4385490569 modified "2023-09-23" @default.
- W4385490569 title "Optimization of an adverse outcome pathway network on chemical-induced cholestasis using an artificial intelligence-assisted data collection and confidence level quantification approach" @default.
- W4385490569 cites W1966514588 @default.
- W4385490569 cites W1975059057 @default.
- W4385490569 cites W1999169119 @default.
- W4385490569 cites W2019040997 @default.
- W4385490569 cites W2033440519 @default.
- W4385490569 cites W2038304359 @default.
- W4385490569 cites W2046470405 @default.
- W4385490569 cites W2078033160 @default.
- W4385490569 cites W2118254089 @default.
- W4385490569 cites W2124260053 @default.
- W4385490569 cites W2152548885 @default.
- W4385490569 cites W2153238893 @default.
- W4385490569 cites W2165423709 @default.
- W4385490569 cites W2528441510 @default.
- W4385490569 cites W2586155530 @default.
- W4385490569 cites W2600147082 @default.
- W4385490569 cites W2765128648 @default.
- W4385490569 cites W2792445736 @default.
- W4385490569 cites W2793019704 @default.
- W4385490569 cites W2793215279 @default.
- W4385490569 cites W2835694964 @default.
- W4385490569 cites W2900774558 @default.
- W4385490569 cites W2936376796 @default.
- W4385490569 cites W2940681880 @default.
- W4385490569 cites W2953486256 @default.
- W4385490569 cites W2990427812 @default.
- W4385490569 cites W3012000503 @default.
- W4385490569 cites W3014968315 @default.
- W4385490569 cites W3043212243 @default.
- W4385490569 cites W3122164587 @default.
- W4385490569 cites W3133858114 @default.
- W4385490569 cites W3161800401 @default.
- W4385490569 cites W3165049538 @default.
- W4385490569 cites W3173735040 @default.
- W4385490569 cites W3183052692 @default.
- W4385490569 cites W3187281029 @default.
- W4385490569 doi "https://doi.org/10.1016/j.jbi.2023.104465" @default.
- W4385490569 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37541407" @default.
- W4385490569 hasPublicationYear "2023" @default.
- W4385490569 type Work @default.
- W4385490569 citedByCount "0" @default.
- W4385490569 crossrefType "journal-article" @default.
- W4385490569 hasAuthorship W4385490569A5002749842 @default.
- W4385490569 hasAuthorship W4385490569A5018002605 @default.
- W4385490569 hasAuthorship W4385490569A5018211217 @default.
- W4385490569 hasAuthorship W4385490569A5022384436 @default.
- W4385490569 hasAuthorship W4385490569A5034172499 @default.
- W4385490569 hasAuthorship W4385490569A5038739123 @default.
- W4385490569 hasAuthorship W4385490569A5040659202 @default.
- W4385490569 hasAuthorship W4385490569A5045811224 @default.
- W4385490569 hasAuthorship W4385490569A5045862213 @default.
- W4385490569 hasAuthorship W4385490569A5048858422 @default.
- W4385490569 hasAuthorship W4385490569A5061472749 @default.
- W4385490569 hasAuthorship W4385490569A5068229635 @default.
- W4385490569 hasAuthorship W4385490569A5074433514 @default.
- W4385490569 hasAuthorship W4385490569A5092439682 @default.
- W4385490569 hasBestOaLocation W43854905691 @default.
- W4385490569 hasConcept C105795698 @default.
- W4385490569 hasConcept C121332964 @default.
- W4385490569 hasConcept C124101348 @default.
- W4385490569 hasConcept C133462117 @default.
- W4385490569 hasConcept C154945302 @default.
- W4385490569 hasConcept C2522767166 @default.
- W4385490569 hasConcept C26517878 @default.
- W4385490569 hasConcept C2779662365 @default.
- W4385490569 hasConcept C2910206359 @default.
- W4385490569 hasConcept C33923547 @default.
- W4385490569 hasConcept C38652104 @default.
- W4385490569 hasConcept C41008148 @default.
- W4385490569 hasConcept C62520636 @default.
- W4385490569 hasConcept C70721500 @default.
- W4385490569 hasConcept C86803240 @default.
- W4385490569 hasConceptScore W4385490569C105795698 @default.
- W4385490569 hasConceptScore W4385490569C121332964 @default.
- W4385490569 hasConceptScore W4385490569C124101348 @default.
- W4385490569 hasConceptScore W4385490569C133462117 @default.
- W4385490569 hasConceptScore W4385490569C154945302 @default.
- W4385490569 hasConceptScore W4385490569C2522767166 @default.
- W4385490569 hasConceptScore W4385490569C26517878 @default.