Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385490601> ?p ?o ?g. }
- W4385490601 endingPage "1976" @default.
- W4385490601 startingPage "1976" @default.
- W4385490601 abstract "Due to sensor failure, noise interference and other factors, the data collected in the structural health monitoring (SHM) system will show a variety of abnormal patterns, which will bring great uncertainty to the structural safety assessment. This paper proposes an automatic data anomaly diagnosis method for SHM based on a multimodal deep neural network. In order to improve the detection accuracy, both two-dimensional and one-dimensional features of the sensor data are fused in the multimodal deep neural network. The network consists of two convolutional neural network (CNN) channels, one a 2D-CNN channel for extracting time–frequency features of sensor data and the other a 1D-CNN channel for extracting raw one-dimensional features of sensor data. After convolution and pooling operations for the sensor data by the 2D channel and 1D channel separately, the two types of extracted features are flattened into one-dimensional vectors and concatenated at the concatenation layer. The concatenated vector is then fed into fully connected layers for final SHM data anomaly classification. In order to evaluate the reliability of the proposed method, the monitored data lasting for one month of a long-span cable-stayed bridge were used for training, validation, and testing. Six types of training conditions (missing, minor, outlier, over-range oscillation, trend, and drift) are studied and analyzed to address the issue of imbalanced training data. With an accuracy rate of 95.10%, the optimal model demonstrates the effectiveness and capability of the proposed method. The proposed method shows a promising future as a reliable AI-assisted digital tool for safety assessment in structural health monitoring systems." @default.
- W4385490601 created "2023-08-03" @default.
- W4385490601 creator A5026970075 @default.
- W4385490601 creator A5032381814 @default.
- W4385490601 creator A5033415872 @default.
- W4385490601 creator A5080911434 @default.
- W4385490601 creator A5089096025 @default.
- W4385490601 date "2023-08-02" @default.
- W4385490601 modified "2023-09-29" @default.
- W4385490601 title "Multimodal Deep Neural Network-Based Sensor Data Anomaly Diagnosis Method for Structural Health Monitoring" @default.
- W4385490601 cites W1989769999 @default.
- W4385490601 cites W1991147404 @default.
- W4385490601 cites W2063922127 @default.
- W4385490601 cites W2081442761 @default.
- W4385490601 cites W2084229232 @default.
- W4385490601 cites W2089965638 @default.
- W4385490601 cites W2104353034 @default.
- W4385490601 cites W2112796928 @default.
- W4385490601 cites W2135596296 @default.
- W4385490601 cites W2406523001 @default.
- W4385490601 cites W2509388533 @default.
- W4385490601 cites W2618530766 @default.
- W4385490601 cites W2703411559 @default.
- W4385490601 cites W2767512561 @default.
- W4385490601 cites W2791957585 @default.
- W4385490601 cites W2809064761 @default.
- W4385490601 cites W2896613037 @default.
- W4385490601 cites W2898026885 @default.
- W4385490601 cites W2902164950 @default.
- W4385490601 cites W2903163391 @default.
- W4385490601 cites W2945057656 @default.
- W4385490601 cites W3033621544 @default.
- W4385490601 cites W3110921317 @default.
- W4385490601 cites W3115652015 @default.
- W4385490601 cites W3155019887 @default.
- W4385490601 cites W3157818903 @default.
- W4385490601 cites W3173676488 @default.
- W4385490601 cites W3195656424 @default.
- W4385490601 cites W3203012941 @default.
- W4385490601 cites W4293065977 @default.
- W4385490601 cites W4313299164 @default.
- W4385490601 cites W4318830872 @default.
- W4385490601 doi "https://doi.org/10.3390/buildings13081976" @default.
- W4385490601 hasPublicationYear "2023" @default.
- W4385490601 type Work @default.
- W4385490601 citedByCount "0" @default.
- W4385490601 crossrefType "journal-article" @default.
- W4385490601 hasAuthorship W4385490601A5026970075 @default.
- W4385490601 hasAuthorship W4385490601A5032381814 @default.
- W4385490601 hasAuthorship W4385490601A5033415872 @default.
- W4385490601 hasAuthorship W4385490601A5080911434 @default.
- W4385490601 hasAuthorship W4385490601A5089096025 @default.
- W4385490601 hasBestOaLocation W43854906011 @default.
- W4385490601 hasConcept C108583219 @default.
- W4385490601 hasConcept C114614502 @default.
- W4385490601 hasConcept C115961682 @default.
- W4385490601 hasConcept C124101348 @default.
- W4385490601 hasConcept C127413603 @default.
- W4385490601 hasConcept C153180895 @default.
- W4385490601 hasConcept C154945302 @default.
- W4385490601 hasConcept C2776247918 @default.
- W4385490601 hasConcept C33923547 @default.
- W4385490601 hasConcept C41008148 @default.
- W4385490601 hasConcept C50644808 @default.
- W4385490601 hasConcept C66938386 @default.
- W4385490601 hasConcept C739882 @default.
- W4385490601 hasConcept C81363708 @default.
- W4385490601 hasConcept C87619178 @default.
- W4385490601 hasConcept C99498987 @default.
- W4385490601 hasConceptScore W4385490601C108583219 @default.
- W4385490601 hasConceptScore W4385490601C114614502 @default.
- W4385490601 hasConceptScore W4385490601C115961682 @default.
- W4385490601 hasConceptScore W4385490601C124101348 @default.
- W4385490601 hasConceptScore W4385490601C127413603 @default.
- W4385490601 hasConceptScore W4385490601C153180895 @default.
- W4385490601 hasConceptScore W4385490601C154945302 @default.
- W4385490601 hasConceptScore W4385490601C2776247918 @default.
- W4385490601 hasConceptScore W4385490601C33923547 @default.
- W4385490601 hasConceptScore W4385490601C41008148 @default.
- W4385490601 hasConceptScore W4385490601C50644808 @default.
- W4385490601 hasConceptScore W4385490601C66938386 @default.
- W4385490601 hasConceptScore W4385490601C739882 @default.
- W4385490601 hasConceptScore W4385490601C81363708 @default.
- W4385490601 hasConceptScore W4385490601C87619178 @default.
- W4385490601 hasConceptScore W4385490601C99498987 @default.
- W4385490601 hasIssue "8" @default.
- W4385490601 hasLocation W43854906011 @default.
- W4385490601 hasOpenAccess W4385490601 @default.
- W4385490601 hasPrimaryLocation W43854906011 @default.
- W4385490601 hasRelatedWork W2731899572 @default.
- W4385490601 hasRelatedWork W2999805992 @default.
- W4385490601 hasRelatedWork W3011074480 @default.
- W4385490601 hasRelatedWork W3116150086 @default.
- W4385490601 hasRelatedWork W3133861977 @default.
- W4385490601 hasRelatedWork W4200173597 @default.
- W4385490601 hasRelatedWork W4285195761 @default.
- W4385490601 hasRelatedWork W4291897433 @default.
- W4385490601 hasRelatedWork W4312417841 @default.