Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385490679> ?p ?o ?g. }
- W4385490679 endingPage "918" @default.
- W4385490679 startingPage "918" @default.
- W4385490679 abstract "This work presents SeizFt—a novel seizure detection framework that utilizes machine learning to automatically detect seizures using wearable SensorDot EEG data. Inspired by interpretable sleep staging, our novel approach employs a unique combination of data augmentation, meaningful feature extraction, and an ensemble of decision trees to improve resilience to variations in EEG and to increase the capacity to generalize to unseen data. Fourier Transform (FT) Surrogates were utilized to increase sample size and improve the class balance between labeled non-seizure and seizure epochs. To enhance model stability and accuracy, SeizFt utilizes an ensemble of decision trees through the CatBoost classifier to classify each second of EEG recording as seizure or non-seizure. The SeizIt1 dataset was used for training, and the SeizIt2 dataset for validation and testing. Model performance for seizure detection was evaluated using two primary metrics: sensitivity using the any-overlap method (OVLP) and False Alarm (FA) rate using epoch-based scoring (EPOCH). Notably, SeizFt placed first among an array of state-of-the-art seizure detection algorithms as part of the Seizure Detection Grand Challenge at the 2023 International Conference on Acoustics, Speech, and Signal Processing (ICASSP). SeizFt outperformed state-of-the-art black-box models in accurate seizure detection and minimized false alarms, obtaining a total score of 40.15, combining OVLP and EPOCH across two tasks and representing an improvement of ~30% from the next best approach. The interpretability of SeizFt is a key advantage, as it fosters trust and accountability among healthcare professionals. The most predictive seizure detection features extracted from SeizFt were: delta wave, interquartile range, standard deviation, total absolute power, theta wave, the ratio of delta to theta, binned entropy, Hjorth complexity, delta + theta, and Higuchi fractal dimension. In conclusion, the successful application of SeizFt to wearable SensorDot data suggests its potential for real-time, continuous monitoring to improve personalized medicine for epilepsy." @default.
- W4385490679 created "2023-08-03" @default.
- W4385490679 creator A5006786315 @default.
- W4385490679 creator A5011455956 @default.
- W4385490679 date "2023-08-02" @default.
- W4385490679 modified "2023-10-05" @default.
- W4385490679 title "SeizFt: Interpretable Machine Learning for Seizure Detection Using Wearables" @default.
- W4385490679 cites W1482119925 @default.
- W4385490679 cites W1981082198 @default.
- W4385490679 cites W2031034568 @default.
- W4385490679 cites W2049357466 @default.
- W4385490679 cites W2052394872 @default.
- W4385490679 cites W2132240828 @default.
- W4385490679 cites W2132403112 @default.
- W4385490679 cites W2169918686 @default.
- W4385490679 cites W2276567012 @default.
- W4385490679 cites W2501835585 @default.
- W4385490679 cites W2741907166 @default.
- W4385490679 cites W2779696746 @default.
- W4385490679 cites W2803988204 @default.
- W4385490679 cites W2894170005 @default.
- W4385490679 cites W2915149867 @default.
- W4385490679 cites W2918422051 @default.
- W4385490679 cites W2963290013 @default.
- W4385490679 cites W2964488987 @default.
- W4385490679 cites W3008869256 @default.
- W4385490679 cites W3035682985 @default.
- W4385490679 cites W3103145119 @default.
- W4385490679 cites W3111670203 @default.
- W4385490679 cites W3138819813 @default.
- W4385490679 cites W3179475981 @default.
- W4385490679 cites W4206244879 @default.
- W4385490679 cites W4207043525 @default.
- W4385490679 cites W4212772483 @default.
- W4385490679 cites W4214826020 @default.
- W4385490679 cites W4226128084 @default.
- W4385490679 cites W4226197518 @default.
- W4385490679 cites W4280524916 @default.
- W4385490679 cites W4281567360 @default.
- W4385490679 cites W4281839697 @default.
- W4385490679 cites W4288514045 @default.
- W4385490679 cites W4296957597 @default.
- W4385490679 cites W4306377528 @default.
- W4385490679 cites W4311157749 @default.
- W4385490679 cites W4317792976 @default.
- W4385490679 cites W4323543870 @default.
- W4385490679 cites W4323922481 @default.
- W4385490679 cites W4372266814 @default.
- W4385490679 cites W4372270146 @default.
- W4385490679 cites W4375869105 @default.
- W4385490679 cites W4375869408 @default.
- W4385490679 cites W4379052116 @default.
- W4385490679 cites W3162943204 @default.
- W4385490679 doi "https://doi.org/10.3390/bioengineering10080918" @default.
- W4385490679 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37627803" @default.
- W4385490679 hasPublicationYear "2023" @default.
- W4385490679 type Work @default.
- W4385490679 citedByCount "1" @default.
- W4385490679 crossrefType "journal-article" @default.
- W4385490679 hasAuthorship W4385490679A5006786315 @default.
- W4385490679 hasAuthorship W4385490679A5011455956 @default.
- W4385490679 hasBestOaLocation W43854906791 @default.
- W4385490679 hasConcept C118552586 @default.
- W4385490679 hasConcept C119857082 @default.
- W4385490679 hasConcept C149635348 @default.
- W4385490679 hasConcept C150594956 @default.
- W4385490679 hasConcept C153180895 @default.
- W4385490679 hasConcept C154945302 @default.
- W4385490679 hasConcept C15744967 @default.
- W4385490679 hasConcept C169258074 @default.
- W4385490679 hasConcept C2779334592 @default.
- W4385490679 hasConcept C2781067378 @default.
- W4385490679 hasConcept C41008148 @default.
- W4385490679 hasConcept C522805319 @default.
- W4385490679 hasConcept C52622490 @default.
- W4385490679 hasConcept C77052588 @default.
- W4385490679 hasConcept C84525736 @default.
- W4385490679 hasConceptScore W4385490679C118552586 @default.
- W4385490679 hasConceptScore W4385490679C119857082 @default.
- W4385490679 hasConceptScore W4385490679C149635348 @default.
- W4385490679 hasConceptScore W4385490679C150594956 @default.
- W4385490679 hasConceptScore W4385490679C153180895 @default.
- W4385490679 hasConceptScore W4385490679C154945302 @default.
- W4385490679 hasConceptScore W4385490679C15744967 @default.
- W4385490679 hasConceptScore W4385490679C169258074 @default.
- W4385490679 hasConceptScore W4385490679C2779334592 @default.
- W4385490679 hasConceptScore W4385490679C2781067378 @default.
- W4385490679 hasConceptScore W4385490679C41008148 @default.
- W4385490679 hasConceptScore W4385490679C522805319 @default.
- W4385490679 hasConceptScore W4385490679C52622490 @default.
- W4385490679 hasConceptScore W4385490679C77052588 @default.
- W4385490679 hasConceptScore W4385490679C84525736 @default.
- W4385490679 hasFunder F4320306076 @default.
- W4385490679 hasFunder F4320315474 @default.
- W4385490679 hasFunder F4320332161 @default.
- W4385490679 hasIssue "8" @default.
- W4385490679 hasLocation W43854906791 @default.
- W4385490679 hasLocation W43854906792 @default.