Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385493032> ?p ?o ?g. }
- W4385493032 endingPage "106834" @default.
- W4385493032 startingPage "106834" @default.
- W4385493032 abstract "Deep-learning-based identification and diagnosis of faults in industrial assets has received much attention. It does not need a deep understanding of the target domain or complex signal-processing techniques for time-consuming feature identification and selection. The vast majority of approaches developed in this field rely on public data recorded in laboratory conditions with high-performance measurement equipment. Moreover, primarily vibration data is used for condition monitoring tasks, which is particularly sensitive to typical error patterns in rotating machinery. These conditions are difficult to maintain in industrial environments since using high-performance measurement systems would not be economically feasible. This paper demonstrates that modern deep learning can achieve extraordinary fault detection results with industrial standard low-cost measurement systems. We determine measurements taken from the industrial-sensory equipment that potentially capture the system’s fault patterns. Hereafter, we apply traditional failure detection and identification techniques to evaluate the suitability of the taken measurements for bearing fault detection. These techniques apply envelope analysis to reveal the fault patterns in the signals and a support vector machine to separate the fault classes. We can conclude that the used low-cost sensory equipment is capable to capture meaningful, fault-describing patterns. To improve the failure detection performance we are investigating a 2D, as well as 1D, convolutional neural network approach to identify the error patterns and classify the respective errors. We compare the deep-learning-based methods with the traditional methods. Furthermore, we assess which inverter signal carries the largest fault-describing information content. Experimental results indicate that the proposed deep learning methods outperform traditional fault diagnosis methods, hence, demonstrating the effectiveness in an industrial condition monitoring application." @default.
- W4385493032 created "2023-08-03" @default.
- W4385493032 creator A5022123314 @default.
- W4385493032 creator A5036775943 @default.
- W4385493032 creator A5092583197 @default.
- W4385493032 date "2023-11-01" @default.
- W4385493032 modified "2023-10-14" @default.
- W4385493032 title "Bridging the gap between AI and the industry — A study on bearing fault detection in PMSM-driven systems using CNN and inverter measurement" @default.
- W4385493032 cites W1864680547 @default.
- W4385493032 cites W1965097723 @default.
- W4385493032 cites W1966100433 @default.
- W4385493032 cites W1974225813 @default.
- W4385493032 cites W1977020076 @default.
- W4385493032 cites W1977202657 @default.
- W4385493032 cites W1979724763 @default.
- W4385493032 cites W1983638645 @default.
- W4385493032 cites W1985437849 @default.
- W4385493032 cites W1985969430 @default.
- W4385493032 cites W1993880634 @default.
- W4385493032 cites W2000079856 @default.
- W4385493032 cites W2007221293 @default.
- W4385493032 cites W2011643344 @default.
- W4385493032 cites W2014526686 @default.
- W4385493032 cites W2015544881 @default.
- W4385493032 cites W2027176154 @default.
- W4385493032 cites W2027296658 @default.
- W4385493032 cites W2038384654 @default.
- W4385493032 cites W2043020486 @default.
- W4385493032 cites W2048508162 @default.
- W4385493032 cites W2056494619 @default.
- W4385493032 cites W2057946096 @default.
- W4385493032 cites W2058983449 @default.
- W4385493032 cites W2060304859 @default.
- W4385493032 cites W2064323378 @default.
- W4385493032 cites W2064861692 @default.
- W4385493032 cites W2069090248 @default.
- W4385493032 cites W2072378835 @default.
- W4385493032 cites W2076608692 @default.
- W4385493032 cites W2079195815 @default.
- W4385493032 cites W2107074288 @default.
- W4385493032 cites W2110337578 @default.
- W4385493032 cites W2117448551 @default.
- W4385493032 cites W2131299455 @default.
- W4385493032 cites W2132265582 @default.
- W4385493032 cites W2133832971 @default.
- W4385493032 cites W2134502076 @default.
- W4385493032 cites W2139853183 @default.
- W4385493032 cites W2140316189 @default.
- W4385493032 cites W2140336071 @default.
- W4385493032 cites W2153428002 @default.
- W4385493032 cites W2195063230 @default.
- W4385493032 cites W2210578145 @default.
- W4385493032 cites W2219903032 @default.
- W4385493032 cites W2317595875 @default.
- W4385493032 cites W2461729787 @default.
- W4385493032 cites W2480364715 @default.
- W4385493032 cites W2488793338 @default.
- W4385493032 cites W2584994008 @default.
- W4385493032 cites W2603304445 @default.
- W4385493032 cites W2737404945 @default.
- W4385493032 cites W2744790985 @default.
- W4385493032 cites W2748287326 @default.
- W4385493032 cites W2769634371 @default.
- W4385493032 cites W2771734292 @default.
- W4385493032 cites W2804879845 @default.
- W4385493032 cites W2810057162 @default.
- W4385493032 cites W2810292802 @default.
- W4385493032 cites W2887782657 @default.
- W4385493032 cites W2919115771 @default.
- W4385493032 cites W2944364052 @default.
- W4385493032 cites W2947658250 @default.
- W4385493032 cites W2953553076 @default.
- W4385493032 cites W2965625921 @default.
- W4385493032 cites W2966008650 @default.
- W4385493032 cites W2968409655 @default.
- W4385493032 cites W2970706158 @default.
- W4385493032 cites W2983270123 @default.
- W4385493032 cites W2988142396 @default.
- W4385493032 cites W2990851485 @default.
- W4385493032 cites W2999663439 @default.
- W4385493032 cites W3002775900 @default.
- W4385493032 cites W3003987289 @default.
- W4385493032 cites W3006342871 @default.
- W4385493032 cites W3008819860 @default.
- W4385493032 cites W3015173390 @default.
- W4385493032 cites W3018957240 @default.
- W4385493032 cites W3022112205 @default.
- W4385493032 cites W3047598527 @default.
- W4385493032 cites W3083789190 @default.
- W4385493032 cites W3093333723 @default.
- W4385493032 cites W3093375059 @default.
- W4385493032 cites W3098250197 @default.
- W4385493032 cites W3098358675 @default.
- W4385493032 cites W3110074784 @default.
- W4385493032 cites W3113081890 @default.
- W4385493032 cites W3127815279 @default.
- W4385493032 cites W3153620590 @default.
- W4385493032 cites W3170591781 @default.