Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385494018> ?p ?o ?g. }
- W4385494018 endingPage "154726" @default.
- W4385494018 startingPage "154726" @default.
- W4385494018 abstract "Pancreatic cancer is one of the highly invasive and the seventh most common cause of death among cancers worldwide. To identify essential genes and the involved mechanisms in pancreatic cancer, we used bioinformatics analysis to identify potential biomarkers for pancreatic cancer management. Gene expression profiles of pancreatic cancer patients and normal tissues were screened and downloaded from The Cancer Genome Atlas (TCGA) bioinformatics database. The Differentially expressed genes (DEGs) were identified among gene expression signatures of normal and pancreatic cancer, using R software. Then, enrichment analysis of the DEGs, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, was performed by an interactive and collaborative HTML5 gene list enrichment analysis tool (enrichr) and ToppGene. The protein-protein interaction (PPI) network was also constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and ToppGenet web based tool followed by identifying hub genes of the top 100 DEGs in pancreatic cancer using Cytoscape software. Over 2000 DEGs with variable log2 fold (LFC) were identified among 34,706 genes. Principal component analysis showed that the top 20 DEGs, including H1-4, H1-5, H4C3, H4C2, RN7SL2, RN7SL3, RN7SL4P, RN7SKP80, SCARNA12, SCARNA10, SCARNA5, SCARNA7, SCARNA6, SCARNA21, SCARNA9, SCARNA13, SNORA73B, SNORA53, SNORA54 might distinguish pancreatic cancer from normal tissue. GO analysis showed that the top DEGs have more enriched in the negative regulation of gene silencing, negative regulation of chromatin organization, negative regulation of chromatin silencing, nucleosome positioning, regulation of chromatin silencing, and nucleosomal DNA binding. KEGG analysis identified an association between pancreatic cancer and systemic lupus erythematosus, alcoholism, neutrophil extracellular trap formation, and viral carcinogenesis. In PPI network analysis, we found that the different types of histone-encoding genes are involved as hub genes in the carcinogenesis of pancreatic cancer. In conclusion, our bioinformatics analysis identified genes that were significantly related to the prognosis of pancreatic cancer patients. These genes and pathways could serve as new potential prognostic markers and be used to develop treatments for pancreatic cancer patients." @default.
- W4385494018 created "2023-08-03" @default.
- W4385494018 creator A5008697177 @default.
- W4385494018 creator A5041001399 @default.
- W4385494018 creator A5062884937 @default.
- W4385494018 creator A5067053111 @default.
- W4385494018 creator A5069664128 @default.
- W4385494018 creator A5073123557 @default.
- W4385494018 creator A5074442909 @default.
- W4385494018 creator A5084705678 @default.
- W4385494018 date "2023-09-01" @default.
- W4385494018 modified "2023-10-16" @default.
- W4385494018 title "Screening and identification of potential biomarkers for pancreatic cancer: An integrated bioinformatics analysis" @default.
- W4385494018 cites W1829845709 @default.
- W4385494018 cites W1963740134 @default.
- W4385494018 cites W1972759053 @default.
- W4385494018 cites W1976988528 @default.
- W4385494018 cites W2002420618 @default.
- W4385494018 cites W2008076137 @default.
- W4385494018 cites W2061093976 @default.
- W4385494018 cites W2101179009 @default.
- W4385494018 cites W2124649657 @default.
- W4385494018 cites W2128728535 @default.
- W4385494018 cites W2179438025 @default.
- W4385494018 cites W2292977008 @default.
- W4385494018 cites W2314572326 @default.
- W4385494018 cites W2345356016 @default.
- W4385494018 cites W2396545253 @default.
- W4385494018 cites W2747320717 @default.
- W4385494018 cites W2758472430 @default.
- W4385494018 cites W2774426493 @default.
- W4385494018 cites W2798191310 @default.
- W4385494018 cites W2803098868 @default.
- W4385494018 cites W2888298348 @default.
- W4385494018 cites W2896617398 @default.
- W4385494018 cites W2898368508 @default.
- W4385494018 cites W2903475442 @default.
- W4385494018 cites W2909989567 @default.
- W4385494018 cites W2917919815 @default.
- W4385494018 cites W2946150866 @default.
- W4385494018 cites W2952696407 @default.
- W4385494018 cites W2953495556 @default.
- W4385494018 cites W2954727441 @default.
- W4385494018 cites W2955704173 @default.
- W4385494018 cites W2970534831 @default.
- W4385494018 cites W2971246387 @default.
- W4385494018 cites W2979911343 @default.
- W4385494018 cites W2990042319 @default.
- W4385494018 cites W2994632666 @default.
- W4385494018 cites W3007617846 @default.
- W4385494018 cites W3010956454 @default.
- W4385494018 cites W3013874260 @default.
- W4385494018 cites W3043119218 @default.
- W4385494018 cites W3087498702 @default.
- W4385494018 cites W3092017248 @default.
- W4385494018 cites W3094777795 @default.
- W4385494018 cites W3127676064 @default.
- W4385494018 cites W3145969289 @default.
- W4385494018 cites W3152982364 @default.
- W4385494018 cites W3158550505 @default.
- W4385494018 cites W3160158271 @default.
- W4385494018 cites W3176649973 @default.
- W4385494018 cites W3205578165 @default.
- W4385494018 cites W3207012149 @default.
- W4385494018 cites W3209794905 @default.
- W4385494018 cites W3214253489 @default.
- W4385494018 cites W4206272664 @default.
- W4385494018 cites W4206459770 @default.
- W4385494018 cites W4210430261 @default.
- W4385494018 cites W4220668355 @default.
- W4385494018 cites W4221040608 @default.
- W4385494018 cites W4224005268 @default.
- W4385494018 cites W4225805649 @default.
- W4385494018 cites W4226082398 @default.
- W4385494018 cites W4232847135 @default.
- W4385494018 cites W4311377014 @default.
- W4385494018 cites W4324129531 @default.
- W4385494018 doi "https://doi.org/10.1016/j.prp.2023.154726" @default.
- W4385494018 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37591067" @default.
- W4385494018 hasPublicationYear "2023" @default.
- W4385494018 type Work @default.
- W4385494018 citedByCount "2" @default.
- W4385494018 countsByYear W43854940182023 @default.
- W4385494018 crossrefType "journal-article" @default.
- W4385494018 hasAuthorship W4385494018A5008697177 @default.
- W4385494018 hasAuthorship W4385494018A5041001399 @default.
- W4385494018 hasAuthorship W4385494018A5062884937 @default.
- W4385494018 hasAuthorship W4385494018A5067053111 @default.
- W4385494018 hasAuthorship W4385494018A5069664128 @default.
- W4385494018 hasAuthorship W4385494018A5073123557 @default.
- W4385494018 hasAuthorship W4385494018A5074442909 @default.
- W4385494018 hasAuthorship W4385494018A5084705678 @default.
- W4385494018 hasBestOaLocation W43854940182 @default.
- W4385494018 hasConcept C104317684 @default.
- W4385494018 hasConcept C119056186 @default.
- W4385494018 hasConcept C121608353 @default.
- W4385494018 hasConcept C150194340 @default.
- W4385494018 hasConcept C152724338 @default.