Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385494673> ?p ?o ?g. }
- W4385494673 endingPage "102158" @default.
- W4385494673 startingPage "102158" @default.
- W4385494673 abstract "This paper presents Multinet, an unsupervised deep learning (DL) approach for power allocation in industrial environments and IIoT applications. Multinet extends the previously proposed singular value decomposition network (SVDNet), which utilizes supervised DL to approximate the performance of the WMMSE algorithm. While SVDNet requires labeled data for training, limiting its scalability and generalization performance, in contrast, Multinet employs unsupervised DL to directly optimize the sum rate maximization objective function, eliminating the need for labeled datasets and improving training efficiency. Simulation studies are conducted to evaluate Multinet’s performance in an industrial environment, utilizing parameters derived from measured large-scale fading characteristics of the industrial radio channel at 5200 MHz. The suitability of Multinet for industrial applications is thus assessed and numerical evaluations demonstrate that Multinet outperforms benchmark supervised and unsupervised DL-based power control schemes in terms of sum rate and energy efficiency." @default.
- W4385494673 created "2023-08-03" @default.
- W4385494673 creator A5013606410 @default.
- W4385494673 creator A5020563756 @default.
- W4385494673 creator A5055069205 @default.
- W4385494673 date "2023-10-01" @default.
- W4385494673 modified "2023-09-26" @default.
- W4385494673 title "MultiNet: Deep unsupervised power control for industrial MU-MIMO networks" @default.
- W4385494673 cites W1932847118 @default.
- W4385494673 cites W2038194220 @default.
- W4385494673 cites W2100755644 @default.
- W4385494673 cites W2135032037 @default.
- W4385494673 cites W2150166076 @default.
- W4385494673 cites W2171882038 @default.
- W4385494673 cites W2273675851 @default.
- W4385494673 cites W2613120170 @default.
- W4385494673 cites W2616867685 @default.
- W4385494673 cites W2789250945 @default.
- W4385494673 cites W2797462110 @default.
- W4385494673 cites W2898754723 @default.
- W4385494673 cites W2940445774 @default.
- W4385494673 cites W2963511957 @default.
- W4385494673 cites W2973380603 @default.
- W4385494673 cites W2992716901 @default.
- W4385494673 cites W2998578058 @default.
- W4385494673 cites W3007263794 @default.
- W4385494673 cites W3043320740 @default.
- W4385494673 cites W3045558612 @default.
- W4385494673 cites W3082607014 @default.
- W4385494673 cites W3137786661 @default.
- W4385494673 cites W3137956968 @default.
- W4385494673 cites W3155534886 @default.
- W4385494673 cites W3168997536 @default.
- W4385494673 cites W3171310561 @default.
- W4385494673 cites W3183478447 @default.
- W4385494673 cites W3201530369 @default.
- W4385494673 cites W4225374812 @default.
- W4385494673 cites W4225656449 @default.
- W4385494673 cites W4285742293 @default.
- W4385494673 cites W4297375203 @default.
- W4385494673 cites W4315750621 @default.
- W4385494673 cites W4378974380 @default.
- W4385494673 cites W4385801560 @default.
- W4385494673 doi "https://doi.org/10.1016/j.phycom.2023.102158" @default.
- W4385494673 hasPublicationYear "2023" @default.
- W4385494673 type Work @default.
- W4385494673 citedByCount "0" @default.
- W4385494673 crossrefType "journal-article" @default.
- W4385494673 hasAuthorship W4385494673A5013606410 @default.
- W4385494673 hasAuthorship W4385494673A5020563756 @default.
- W4385494673 hasAuthorship W4385494673A5055069205 @default.
- W4385494673 hasConcept C119857082 @default.
- W4385494673 hasConcept C126255220 @default.
- W4385494673 hasConcept C127162648 @default.
- W4385494673 hasConcept C13280743 @default.
- W4385494673 hasConcept C134306372 @default.
- W4385494673 hasConcept C154945302 @default.
- W4385494673 hasConcept C177148314 @default.
- W4385494673 hasConcept C185798385 @default.
- W4385494673 hasConcept C205649164 @default.
- W4385494673 hasConcept C207987634 @default.
- W4385494673 hasConcept C2776330181 @default.
- W4385494673 hasConcept C33923547 @default.
- W4385494673 hasConcept C41008148 @default.
- W4385494673 hasConcept C48044578 @default.
- W4385494673 hasConcept C76155785 @default.
- W4385494673 hasConcept C77088390 @default.
- W4385494673 hasConcept C8038995 @default.
- W4385494673 hasConcept C81978471 @default.
- W4385494673 hasConceptScore W4385494673C119857082 @default.
- W4385494673 hasConceptScore W4385494673C126255220 @default.
- W4385494673 hasConceptScore W4385494673C127162648 @default.
- W4385494673 hasConceptScore W4385494673C13280743 @default.
- W4385494673 hasConceptScore W4385494673C134306372 @default.
- W4385494673 hasConceptScore W4385494673C154945302 @default.
- W4385494673 hasConceptScore W4385494673C177148314 @default.
- W4385494673 hasConceptScore W4385494673C185798385 @default.
- W4385494673 hasConceptScore W4385494673C205649164 @default.
- W4385494673 hasConceptScore W4385494673C207987634 @default.
- W4385494673 hasConceptScore W4385494673C2776330181 @default.
- W4385494673 hasConceptScore W4385494673C33923547 @default.
- W4385494673 hasConceptScore W4385494673C41008148 @default.
- W4385494673 hasConceptScore W4385494673C48044578 @default.
- W4385494673 hasConceptScore W4385494673C76155785 @default.
- W4385494673 hasConceptScore W4385494673C77088390 @default.
- W4385494673 hasConceptScore W4385494673C8038995 @default.
- W4385494673 hasConceptScore W4385494673C81978471 @default.
- W4385494673 hasFunder F4320320766 @default.
- W4385494673 hasFunder F4320337336 @default.
- W4385494673 hasLocation W43854946731 @default.
- W4385494673 hasOpenAccess W4385494673 @default.
- W4385494673 hasPrimaryLocation W43854946731 @default.
- W4385494673 hasRelatedWork W112744582 @default.
- W4385494673 hasRelatedWork W3046775127 @default.
- W4385494673 hasRelatedWork W3123344745 @default.
- W4385494673 hasRelatedWork W3196155444 @default.
- W4385494673 hasRelatedWork W3208099188 @default.
- W4385494673 hasRelatedWork W3209574120 @default.