Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385496685> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4385496685 endingPage "100227" @default.
- W4385496685 startingPage "100227" @default.
- W4385496685 abstract "Pore pressure (PP) information plays an important role in analysing the geomechanical properties of the reservoir and hydrocarbon field development. PP prediction is an essential requirement to ensure safe drilling operations and it is a fundamental input for well design, and mud weight estimation for wellbore stability. However, the pore pressure trend prediction in complex geological provinces is challenging particularly at oceanic slope setting, where sedimentation rate is relatively high and PP can be driven by various complex geo-processes. To overcome these difficulties, an advanced machine learning (ML) tool is implemented in combination with empirical methods. The empirical method for PP prediction is comprised of data pre-processing and model establishment stage. Eaton's method and Porosity method have been used for PP calculation of the well U1517A located at Tuaheni Landslide Complex of Hikurangi Subduction zone of IODP expedition 372. Gamma-ray, sonic travel time, bulk density and sonic derived porosity are extracted from well log data for the theoretical framework construction. The normal compaction trend (NCT) curve analysis is used to check the optimum fitting of the low permeable zone data. The statistical analysis is done using the histogram analysis and Pearson correlation coefficient matrix with PP data series to identify potential input combinations for ML-based predictive model development. The dataset is prepared and divided into two parts: Training and Testing. The PP data and well log of borehole U1517A is pre-processed to scale in between [-1 +1] to fit into the input range of the non-linear activation/transfer function of the decision tree regression model. The Decision Tree Regression (DTR) algorithm is built and compared to the model performance to predict the PP and identify the overpressure zone in Hikurangi Tuaheni Zone of IODP Expedition 372." @default.
- W4385496685 created "2023-08-03" @default.
- W4385496685 creator A5069234756 @default.
- W4385496685 creator A5088600971 @default.
- W4385496685 date "2023-08-01" @default.
- W4385496685 modified "2023-09-26" @default.
- W4385496685 title "A machine learning approach for the prediction of pore pressure using well log data of Hikurangi Tuaheni Zone of IODP Expedition 372, New Zealand" @default.
- W4385496685 cites W1803660778 @default.
- W4385496685 cites W1978878626 @default.
- W4385496685 cites W1982582494 @default.
- W4385496685 cites W1985304215 @default.
- W4385496685 cites W2016023958 @default.
- W4385496685 cites W2021328460 @default.
- W4385496685 cites W2048572409 @default.
- W4385496685 cites W2068395046 @default.
- W4385496685 cites W2077693116 @default.
- W4385496685 cites W2161524698 @default.
- W4385496685 cites W2597987609 @default.
- W4385496685 cites W2894965144 @default.
- W4385496685 cites W2904704617 @default.
- W4385496685 cites W2951261127 @default.
- W4385496685 cites W2972666782 @default.
- W4385496685 cites W3044143324 @default.
- W4385496685 cites W3196084296 @default.
- W4385496685 cites W4210392227 @default.
- W4385496685 cites W4210838008 @default.
- W4385496685 cites W4225746579 @default.
- W4385496685 cites W4382280002 @default.
- W4385496685 doi "https://doi.org/10.1016/j.engeos.2023.100227" @default.
- W4385496685 hasPublicationYear "2023" @default.
- W4385496685 type Work @default.
- W4385496685 citedByCount "0" @default.
- W4385496685 crossrefType "journal-article" @default.
- W4385496685 hasAuthorship W4385496685A5069234756 @default.
- W4385496685 hasAuthorship W4385496685A5088600971 @default.
- W4385496685 hasBestOaLocation W43854966851 @default.
- W4385496685 hasConcept C102579867 @default.
- W4385496685 hasConcept C109007969 @default.
- W4385496685 hasConcept C114793014 @default.
- W4385496685 hasConcept C127313418 @default.
- W4385496685 hasConcept C127413603 @default.
- W4385496685 hasConcept C150560799 @default.
- W4385496685 hasConcept C187320778 @default.
- W4385496685 hasConcept C25197100 @default.
- W4385496685 hasConcept C2776662147 @default.
- W4385496685 hasConcept C35817400 @default.
- W4385496685 hasConcept C6648577 @default.
- W4385496685 hasConcept C78519656 @default.
- W4385496685 hasConcept C78762247 @default.
- W4385496685 hasConceptScore W4385496685C102579867 @default.
- W4385496685 hasConceptScore W4385496685C109007969 @default.
- W4385496685 hasConceptScore W4385496685C114793014 @default.
- W4385496685 hasConceptScore W4385496685C127313418 @default.
- W4385496685 hasConceptScore W4385496685C127413603 @default.
- W4385496685 hasConceptScore W4385496685C150560799 @default.
- W4385496685 hasConceptScore W4385496685C187320778 @default.
- W4385496685 hasConceptScore W4385496685C25197100 @default.
- W4385496685 hasConceptScore W4385496685C2776662147 @default.
- W4385496685 hasConceptScore W4385496685C35817400 @default.
- W4385496685 hasConceptScore W4385496685C6648577 @default.
- W4385496685 hasConceptScore W4385496685C78519656 @default.
- W4385496685 hasConceptScore W4385496685C78762247 @default.
- W4385496685 hasFunder F4320308105 @default.
- W4385496685 hasFunder F4320320719 @default.
- W4385496685 hasFunder F4320334771 @default.
- W4385496685 hasLocation W43854966851 @default.
- W4385496685 hasOpenAccess W4385496685 @default.
- W4385496685 hasPrimaryLocation W43854966851 @default.
- W4385496685 hasRelatedWork W2037322397 @default.
- W4385496685 hasRelatedWork W2048341558 @default.
- W4385496685 hasRelatedWork W2144520995 @default.
- W4385496685 hasRelatedWork W2184477422 @default.
- W4385496685 hasRelatedWork W2350160718 @default.
- W4385496685 hasRelatedWork W2374208192 @default.
- W4385496685 hasRelatedWork W2379495675 @default.
- W4385496685 hasRelatedWork W2618488312 @default.
- W4385496685 hasRelatedWork W2741337567 @default.
- W4385496685 hasRelatedWork W2900070813 @default.
- W4385496685 isParatext "false" @default.
- W4385496685 isRetracted "false" @default.
- W4385496685 workType "article" @default.