Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385500650> ?p ?o ?g. }
- W4385500650 endingPage "0" @default.
- W4385500650 startingPage "0" @default.
- W4385500650 abstract "Life is a highly ordered combination, and the basic biological processes of cells and tissues are essentially controlled by the structural order of biomolecular assembly, in which the conformational characteristics of biomolecules, such as arrangement, orientation, helix, and folding, are closely related to the physiological functions of biological tissues. In the skin, muscle, and nerve tissues of living animals, for instance, fibrous proteins, collagen, nerve fibers, and DNA frequently exhibit molecular spatial conformation properties such as particular alignment or helical structure, and such tissues have distinct optical polarization responses. The fundamental structural foundation for tissues to carry out certain activities is provided by molecular conformational characteristics. Early illness diagnosis will be aided by the accurate detection and efficient revelation of molecular conformational characteristics and their alterations. The microscopic organization, structure, orientation, chirality, and other structural details of living things or materials can be obtained using polarization imaging. The analysis of the imaging depth and polarization data is challenging, despite its widespread usage in the fields of material detection and biological imaging. Photoacoustic imaging preserves both the great contrast of optical imaging and the deep penetration of ultrasonic imaging by using light as the excitation source and ultrasound as the carrier for information transmission. While keeping the benefits of non-invasiveness, it is capable of high-resolution imaging, deep penetration, and functional imaging. A polarized photoacoustic imaging technology has recently been developed to complement polarization optical imaging and allow the collection of three-dimensional polarization data from deeper layers of the medium. This offers a straightforward and efficient method for measuring the polarimetry of tissues, suggesting substantial promise for both biological imaging and substance detection. The evolution of polarized photoacoustic imaging technology is outlined in this publication. First, the technical underpinnings of polarized photoacoustic imaging are described. Then, from the two application fields of biological tissue imaging and nanomaterial detection, the related research progress of polarized photoacoustic microscopic imaging, polarized photoacoustic computational tomography, and Polarized photoacoustic nanoparticles' molecular imaging is presented. We briefly explain the depolarization that results from particle size, density, and organization as polarized light travels through tissue. In anisotropic media, the change in the mid-incident polarization state of such a sample is caused by tissue birefringence and scattering because of the inherent birefringence effect of molecules, whereas in isotropic media, depolarization is largely determined by the density and size of the scatterer. The potential applications of polarized photoacoustic imaging are then discussed." @default.
- W4385500650 created "2023-08-03" @default.
- W4385500650 creator A5009019093 @default.
- W4385500650 creator A5017541508 @default.
- W4385500650 creator A5023125527 @default.
- W4385500650 creator A5040628771 @default.
- W4385500650 creator A5085352453 @default.
- W4385500650 creator A5092584905 @default.
- W4385500650 creator A5092786849 @default.
- W4385500650 date "2023-01-01" @default.
- W4385500650 modified "2023-10-01" @default.
- W4385500650 title "Research and Development of Polarized Photoacoustic Imaging Technology" @default.
- W4385500650 cites W1149291733 @default.
- W4385500650 cites W1964216949 @default.
- W4385500650 cites W1978321410 @default.
- W4385500650 cites W2006470709 @default.
- W4385500650 cites W2006493549 @default.
- W4385500650 cites W2009410424 @default.
- W4385500650 cites W2010910096 @default.
- W4385500650 cites W2016752876 @default.
- W4385500650 cites W2018810875 @default.
- W4385500650 cites W2030964111 @default.
- W4385500650 cites W2031703351 @default.
- W4385500650 cites W2036835433 @default.
- W4385500650 cites W2051372933 @default.
- W4385500650 cites W2094330246 @default.
- W4385500650 cites W2109549397 @default.
- W4385500650 cites W2136705590 @default.
- W4385500650 cites W2141802984 @default.
- W4385500650 cites W2148309086 @default.
- W4385500650 cites W2168816122 @default.
- W4385500650 cites W2172047227 @default.
- W4385500650 cites W2281728970 @default.
- W4385500650 cites W2319225958 @default.
- W4385500650 cites W2333144807 @default.
- W4385500650 cites W2343259352 @default.
- W4385500650 cites W2418802570 @default.
- W4385500650 cites W2500522403 @default.
- W4385500650 cites W2606223814 @default.
- W4385500650 cites W2726321341 @default.
- W4385500650 cites W2727929522 @default.
- W4385500650 cites W2769001568 @default.
- W4385500650 cites W2799636803 @default.
- W4385500650 cites W2801495538 @default.
- W4385500650 cites W2808146670 @default.
- W4385500650 cites W2897410701 @default.
- W4385500650 cites W2914057396 @default.
- W4385500650 cites W2991266769 @default.
- W4385500650 cites W3001919880 @default.
- W4385500650 cites W3091169880 @default.
- W4385500650 cites W3158535102 @default.
- W4385500650 cites W3173269916 @default.
- W4385500650 cites W3215971779 @default.
- W4385500650 cites W4205219005 @default.
- W4385500650 cites W4224296628 @default.
- W4385500650 cites W4225607470 @default.
- W4385500650 cites W4283651026 @default.
- W4385500650 cites W4283721346 @default.
- W4385500650 cites W4285306426 @default.
- W4385500650 cites W4298140200 @default.
- W4385500650 cites W4322767420 @default.
- W4385500650 cites W4366503153 @default.
- W4385500650 cites W4378348697 @default.
- W4385500650 doi "https://doi.org/10.7498/aps.72.20230900" @default.
- W4385500650 hasPublicationYear "2023" @default.
- W4385500650 type Work @default.
- W4385500650 citedByCount "0" @default.
- W4385500650 crossrefType "journal-article" @default.
- W4385500650 hasAuthorship W4385500650A5009019093 @default.
- W4385500650 hasAuthorship W4385500650A5017541508 @default.
- W4385500650 hasAuthorship W4385500650A5023125527 @default.
- W4385500650 hasAuthorship W4385500650A5040628771 @default.
- W4385500650 hasAuthorship W4385500650A5085352453 @default.
- W4385500650 hasAuthorship W4385500650A5092584905 @default.
- W4385500650 hasAuthorship W4385500650A5092786849 @default.
- W4385500650 hasBestOaLocation W43855006501 @default.
- W4385500650 hasConcept C120665830 @default.
- W4385500650 hasConcept C121332964 @default.
- W4385500650 hasConcept C12554922 @default.
- W4385500650 hasConcept C126838900 @default.
- W4385500650 hasConcept C136339569 @default.
- W4385500650 hasConcept C147789679 @default.
- W4385500650 hasConcept C150903083 @default.
- W4385500650 hasConcept C165998758 @default.
- W4385500650 hasConcept C171250308 @default.
- W4385500650 hasConcept C185592680 @default.
- W4385500650 hasConcept C192562407 @default.
- W4385500650 hasConcept C205049153 @default.
- W4385500650 hasConcept C207001950 @default.
- W4385500650 hasConcept C49853544 @default.
- W4385500650 hasConcept C54932901 @default.
- W4385500650 hasConcept C71924100 @default.
- W4385500650 hasConcept C86803240 @default.
- W4385500650 hasConceptScore W4385500650C120665830 @default.
- W4385500650 hasConceptScore W4385500650C121332964 @default.
- W4385500650 hasConceptScore W4385500650C12554922 @default.
- W4385500650 hasConceptScore W4385500650C126838900 @default.
- W4385500650 hasConceptScore W4385500650C136339569 @default.