Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385514260> ?p ?o ?g. }
- W4385514260 endingPage "650" @default.
- W4385514260 startingPage "641" @default.
- W4385514260 abstract "Microchip electrophoresis is a separation technology that involves fluid manipulation in a microchip; the advantages of this technique include high separation efficiency, low sample consumption, and fast and easy multistep integration. Microchip electrophoresis has been widely used to rapidly separate and analyze complex samples in biology and medicine. In this paper, we review the research progress on microchip electrophoresis, explore the fabrication and separation modes of microchip materials, and discuss their applications in the detection and analysis of biological samples. Research on microchip materials can be mainly categorized into chip materials, channel modifications, electrode materials, and electrode integration methods. Microchip materials research involves the development of silicon, glass, polydimethylsiloxane and polymethyl methacrylate-based, and paper electrophoretic materials. Microchannel modification research primarily focuses on the dynamic and static modification methods of microchannels. Although chip materials and fabrication technologies have improved over the years, problems such as high manufacturing costs, long processing time, and short service lives continue to persist. These problems hinder the industrialization of microchip electrophoresis. At present, few static methods for the surface modification of polymer channels are available, and most of them involve a combination of physical adsorption and polymers. Therefore, developing efficient surface modification methods for polymer channels remains a necessary undertaking. In addition, both dynamic and static modifications require the introduction of other chemicals, which may not be conducive to the expansion of subsequent experiments. The materials commonly used in the development of electrodes and processing methods for electrode-microchip integration include gold, platinum, and silver. Microchip electrophoresis can be divided into two modes according to the uniformity of the electric field: uniform and non-uniform. The uniform electric field electrophoresis mode mainly involves micro free-flow electrophoresis and micro zone electrophoresis, including micro isoelectric focusing electrophoresis, micro isovelocity electrophoresis, and micro density gradient electrophoresis. The non-uniform electric field electrophoresis mode involves micro dielectric electrophoresis. Microchip electrophoresis is typically used in conjunction with conventional laboratory methods, such as optical, electrochemical, and mass spectrometry, to achieve the rapid and efficient separation and analysis of complex samples. However, the labeling required for most widely used laser-induced fluorescence technologies often involves a cumbersome organic synthesis process, and not all samples can be labeled, which limits the application scenarios of laser-induced fluorescence. The applications of unlabeled microchip electrophoresis-chemiluminescence/dielectrophoresis are also limited, and simplification of the experimental process to achieve simple and rapid microchip electrophoresis remains challenging. Several new models and strategies for high throughput in situ detection based on these detection methods have been developed for microchip electrophoretic systems. However, high throughput analysis by microchip electrophoresis is often dependent on complex chip structures and relatively complicated detection methods; thus, simple high throughput analytical technologies must be further explored. This paper also reviews the progress on microchip electrophoresis for the separation and analysis of complex biological samples, such as biomacromolecules, biological small molecules, and bioparticles, and forecasts the development trend of microchip electrophoresis in the separation and analysis of biomolecules. Over 250 research papers on this field are published annually, and it is gradually becoming a research focus. Most previous research has focused on biomacromolecules, including proteins and nucleic acids; biological small molecules, including amino acids, metabolites, and ions; and bioparticles, including cells and pathogens. However, several problems remain unsolved in the field of microchip electrophoresis. Overall, microchip electrophoresis requires further study to increase its suitability for the separation and analysis of complex biological samples." @default.
- W4385514260 created "2023-08-04" @default.
- W4385514260 creator A5020419080 @default.
- W4385514260 creator A5048459031 @default.
- W4385514260 creator A5069396576 @default.
- W4385514260 creator A5091553000 @default.
- W4385514260 date "2023-08-01" @default.
- W4385514260 modified "2023-09-27" @default.
- W4385514260 title "Advances in microchip electrophoresis for the separation and analysis of biological samples" @default.
- W4385514260 cites W1538020370 @default.
- W4385514260 cites W1920325754 @default.
- W4385514260 cites W1955557586 @default.
- W4385514260 cites W2007762328 @default.
- W4385514260 cites W2564918935 @default.
- W4385514260 cites W2566457256 @default.
- W4385514260 cites W2610465842 @default.
- W4385514260 cites W2620208828 @default.
- W4385514260 cites W2622419770 @default.
- W4385514260 cites W2743262571 @default.
- W4385514260 cites W2766536032 @default.
- W4385514260 cites W2768698660 @default.
- W4385514260 cites W2787513526 @default.
- W4385514260 cites W2792479385 @default.
- W4385514260 cites W2800478291 @default.
- W4385514260 cites W2802649245 @default.
- W4385514260 cites W2896817952 @default.
- W4385514260 cites W2907070492 @default.
- W4385514260 cites W2907949035 @default.
- W4385514260 cites W2910122704 @default.
- W4385514260 cites W2913963362 @default.
- W4385514260 cites W2942579127 @default.
- W4385514260 cites W2949555527 @default.
- W4385514260 cites W2956823904 @default.
- W4385514260 cites W2966121003 @default.
- W4385514260 cites W2971774303 @default.
- W4385514260 cites W2979509282 @default.
- W4385514260 cites W2986464864 @default.
- W4385514260 cites W2993833939 @default.
- W4385514260 cites W3014098594 @default.
- W4385514260 cites W3015278859 @default.
- W4385514260 cites W3046176618 @default.
- W4385514260 cites W3080242438 @default.
- W4385514260 cites W3090001528 @default.
- W4385514260 cites W3108086436 @default.
- W4385514260 cites W3115775750 @default.
- W4385514260 cites W3125878924 @default.
- W4385514260 cites W3135101061 @default.
- W4385514260 cites W3157159694 @default.
- W4385514260 cites W3171837768 @default.
- W4385514260 cites W3176091161 @default.
- W4385514260 cites W3177391894 @default.
- W4385514260 cites W3177575713 @default.
- W4385514260 cites W3198778285 @default.
- W4385514260 cites W3205952335 @default.
- W4385514260 cites W4200005702 @default.
- W4385514260 cites W4200290606 @default.
- W4385514260 cites W4200461357 @default.
- W4385514260 cites W4205140342 @default.
- W4385514260 cites W4205601212 @default.
- W4385514260 cites W4205848375 @default.
- W4385514260 cites W4205899075 @default.
- W4385514260 cites W4206363887 @default.
- W4385514260 cites W4206369700 @default.
- W4385514260 cites W4220729909 @default.
- W4385514260 cites W4220772143 @default.
- W4385514260 cites W4220813412 @default.
- W4385514260 cites W4220826377 @default.
- W4385514260 cites W4220894182 @default.
- W4385514260 cites W4225137923 @default.
- W4385514260 cites W4282932651 @default.
- W4385514260 cites W4285591876 @default.
- W4385514260 cites W4290937653 @default.
- W4385514260 doi "https://doi.org/10.3724/sp.j.1123.2022.12004" @default.
- W4385514260 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37534551" @default.
- W4385514260 hasPublicationYear "2023" @default.
- W4385514260 type Work @default.
- W4385514260 citedByCount "0" @default.
- W4385514260 crossrefType "journal-article" @default.
- W4385514260 hasAuthorship W4385514260A5020419080 @default.
- W4385514260 hasAuthorship W4385514260A5048459031 @default.
- W4385514260 hasAuthorship W4385514260A5069396576 @default.
- W4385514260 hasAuthorship W4385514260A5091553000 @default.
- W4385514260 hasBestOaLocation W43855142602 @default.
- W4385514260 hasConcept C127413603 @default.
- W4385514260 hasConcept C138942068 @default.
- W4385514260 hasConcept C159985019 @default.
- W4385514260 hasConcept C171250308 @default.
- W4385514260 hasConcept C185592680 @default.
- W4385514260 hasConcept C192562407 @default.
- W4385514260 hasConcept C21880701 @default.
- W4385514260 hasConcept C2779849746 @default.
- W4385514260 hasConcept C2900643 @default.
- W4385514260 hasConcept C40250595 @default.
- W4385514260 hasConcept C41008148 @default.
- W4385514260 hasConcept C43617362 @default.
- W4385514260 hasConcept C521977710 @default.
- W4385514260 hasConcept C63662833 @default.
- W4385514260 hasConcept C8673954 @default.