Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385515216> ?p ?o ?g. }
- W4385515216 endingPage "108083" @default.
- W4385515216 startingPage "108083" @default.
- W4385515216 abstract "The measurement of geometric canopy parameters in woody crops is an important task in Precision Agriculture because of their correlation with crop condition and productivity. In recent years, several technological approaches have been developed as an alternative to manual measurements, which are time- and labour-consuming. Two of the most commonly used 3D canopy characterization technologies are mobile terrestrial laser scanning (MTLS) based on light detection and ranging (LiDAR) sensors, and digital aerial photogrammetry (DAP) using imagery from uncrewed aerial vehicles (UAVs). Although both are state-of-the-art and have been fully tested and validated, a complete comparison between their geometric canopy parameter estimations in different woody crops and training systems has not been carried out. For this reason, a set of geometric parameters (canopy height, projected area, and volume) of a vineyard, an intensive peach orchard, and an intensive pear orchard were measured using UAV-DAP and MTLS-LiDAR. A comparison between both kinds of measurements was performed, accounting for the length of the sections in which the crop hedgerows were divided to extract the geometric parameters. Measurements from the UAV and the MTLS were highly correlated (R2 from 0.82 to 0.94) when considering the data from the three crops together, and the correlations were higher when analysing longer row sections. The canopy geometric parameters estimated using the MTLS-LiDAR always had higher values than those from the UAV-DAP. The results presented in this work provide useful data for a more informed selection of technological approaches for 3D crop characterization in Precision Fruticulture and high-throughput phenotyping." @default.
- W4385515216 created "2023-08-04" @default.
- W4385515216 creator A5016068388 @default.
- W4385515216 creator A5039366911 @default.
- W4385515216 creator A5042138033 @default.
- W4385515216 creator A5061612286 @default.
- W4385515216 creator A5071750441 @default.
- W4385515216 creator A5077100656 @default.
- W4385515216 creator A5081289303 @default.
- W4385515216 creator A5089775606 @default.
- W4385515216 creator A5090797031 @default.
- W4385515216 creator A5025665087 @default.
- W4385515216 date "2023-09-01" @default.
- W4385515216 modified "2023-10-17" @default.
- W4385515216 title "Mobile terrestrial laser scanner vs. UAV photogrammetry to estimate woody crop canopy parameters – Part 2: Comparison for different crops and training systems" @default.
- W4385515216 cites W2019400639 @default.
- W4385515216 cites W2065244378 @default.
- W4385515216 cites W2148900376 @default.
- W4385515216 cites W2400716253 @default.
- W4385515216 cites W2436494909 @default.
- W4385515216 cites W2541630240 @default.
- W4385515216 cites W2560462200 @default.
- W4385515216 cites W2582348499 @default.
- W4385515216 cites W2589097845 @default.
- W4385515216 cites W2736987578 @default.
- W4385515216 cites W2768558813 @default.
- W4385515216 cites W2791554042 @default.
- W4385515216 cites W2801837235 @default.
- W4385515216 cites W2808911004 @default.
- W4385515216 cites W2837916766 @default.
- W4385515216 cites W2901577545 @default.
- W4385515216 cites W2906116753 @default.
- W4385515216 cites W2910669015 @default.
- W4385515216 cites W2928980835 @default.
- W4385515216 cites W2980988792 @default.
- W4385515216 cites W2989660890 @default.
- W4385515216 cites W2991358490 @default.
- W4385515216 cites W3027229745 @default.
- W4385515216 cites W3045362285 @default.
- W4385515216 cites W3047425564 @default.
- W4385515216 cites W3109165432 @default.
- W4385515216 cites W3159702250 @default.
- W4385515216 cites W3175735865 @default.
- W4385515216 cites W4200413919 @default.
- W4385515216 cites W4214554174 @default.
- W4385515216 cites W4309710796 @default.
- W4385515216 doi "https://doi.org/10.1016/j.compag.2023.108083" @default.
- W4385515216 hasPublicationYear "2023" @default.
- W4385515216 type Work @default.
- W4385515216 citedByCount "1" @default.
- W4385515216 countsByYear W43855152162023 @default.
- W4385515216 crossrefType "journal-article" @default.
- W4385515216 hasAuthorship W4385515216A5016068388 @default.
- W4385515216 hasAuthorship W4385515216A5025665087 @default.
- W4385515216 hasAuthorship W4385515216A5039366911 @default.
- W4385515216 hasAuthorship W4385515216A5042138033 @default.
- W4385515216 hasAuthorship W4385515216A5061612286 @default.
- W4385515216 hasAuthorship W4385515216A5071750441 @default.
- W4385515216 hasAuthorship W4385515216A5077100656 @default.
- W4385515216 hasAuthorship W4385515216A5081289303 @default.
- W4385515216 hasAuthorship W4385515216A5089775606 @default.
- W4385515216 hasAuthorship W4385515216A5090797031 @default.
- W4385515216 hasBestOaLocation W43855152161 @default.
- W4385515216 hasConcept C101000010 @default.
- W4385515216 hasConcept C117455697 @default.
- W4385515216 hasConcept C118518473 @default.
- W4385515216 hasConcept C120217122 @default.
- W4385515216 hasConcept C120665830 @default.
- W4385515216 hasConcept C121332964 @default.
- W4385515216 hasConcept C131979681 @default.
- W4385515216 hasConcept C141349535 @default.
- W4385515216 hasConcept C154945302 @default.
- W4385515216 hasConcept C166957645 @default.
- W4385515216 hasConcept C205649164 @default.
- W4385515216 hasConcept C2780753983 @default.
- W4385515216 hasConcept C2993375840 @default.
- W4385515216 hasConcept C33923547 @default.
- W4385515216 hasConcept C39432304 @default.
- W4385515216 hasConcept C41008148 @default.
- W4385515216 hasConcept C51399673 @default.
- W4385515216 hasConcept C520434653 @default.
- W4385515216 hasConcept C62649853 @default.
- W4385515216 hasConcept C6557445 @default.
- W4385515216 hasConcept C86803240 @default.
- W4385515216 hasConceptScore W4385515216C101000010 @default.
- W4385515216 hasConceptScore W4385515216C117455697 @default.
- W4385515216 hasConceptScore W4385515216C118518473 @default.
- W4385515216 hasConceptScore W4385515216C120217122 @default.
- W4385515216 hasConceptScore W4385515216C120665830 @default.
- W4385515216 hasConceptScore W4385515216C121332964 @default.
- W4385515216 hasConceptScore W4385515216C131979681 @default.
- W4385515216 hasConceptScore W4385515216C141349535 @default.
- W4385515216 hasConceptScore W4385515216C154945302 @default.
- W4385515216 hasConceptScore W4385515216C166957645 @default.
- W4385515216 hasConceptScore W4385515216C205649164 @default.
- W4385515216 hasConceptScore W4385515216C2780753983 @default.
- W4385515216 hasConceptScore W4385515216C2993375840 @default.
- W4385515216 hasConceptScore W4385515216C33923547 @default.