Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385521225> ?p ?o ?g. }
- W4385521225 abstract "Supervised machine learning (ML) is becoming an influential analytical method in psychology and other social sciences. However, theoretical ML concepts and predictive-modeling techniques are not yet widely taught in psychology programs. This tutorial is intended to provide an intuitive but thorough primer and introduction to supervised ML for psychologists in four consecutive modules. After introducing the basic terminology and mindset of supervised ML, in Module 1, we cover how to use resampling methods to evaluate the performance of ML models (bias-variance trade-off, performance measures, k-fold cross-validation). In Module 2, we introduce the nonlinear random forest, a type of ML model that is particularly user-friendly and well suited to predicting psychological outcomes. Module 3 is about performing empirical benchmark experiments (comparing the performance of several ML models on multiple data sets). Finally, in Module 4, we discuss the interpretation of ML models, including permutation variable importance measures, effect plots (partial-dependence plots, individual conditional-expectation profiles), and the concept of model fairness. Throughout the tutorial, intuitive descriptions of theoretical concepts are provided, with as few mathematical formulas as possible, and followed by code examples using the mlr3 and companion packages in R. Key practical-analysis steps are demonstrated on the publicly available PhoneStudy data set ( N = 624), which includes more than 1,800 variables from smartphone sensing to predict Big Five personality trait scores. The article contains a checklist to be used as a reminder of important elements when performing, reporting, or reviewing ML analyses in psychology. Additional examples and more advanced concepts are demonstrated in online materials ( https://osf.io/9273g/ )." @default.
- W4385521225 created "2023-08-04" @default.
- W4385521225 creator A5016933037 @default.
- W4385521225 creator A5034735453 @default.
- W4385521225 creator A5048056611 @default.
- W4385521225 date "2023-07-01" @default.
- W4385521225 modified "2023-10-14" @default.
- W4385521225 title "Best Practices in Supervised Machine Learning: A Tutorial for Psychologists" @default.
- W4385521225 cites W1509177177 @default.
- W4385521225 cites W1678356000 @default.
- W4385521225 cites W1875061881 @default.
- W4385521225 cites W1966576448 @default.
- W4385521225 cites W1994682257 @default.
- W4385521225 cites W2070230130 @default.
- W4385521225 cites W2083542829 @default.
- W4385521225 cites W2084341220 @default.
- W4385521225 cites W2116825089 @default.
- W4385521225 cites W2119672929 @default.
- W4385521225 cites W2125847307 @default.
- W4385521225 cites W2135046866 @default.
- W4385521225 cites W2141007997 @default.
- W4385521225 cites W2143481518 @default.
- W4385521225 cites W2143891888 @default.
- W4385521225 cites W2153803020 @default.
- W4385521225 cites W2154868463 @default.
- W4385521225 cites W2181164912 @default.
- W4385521225 cites W2284729062 @default.
- W4385521225 cites W2336766371 @default.
- W4385521225 cites W2340342336 @default.
- W4385521225 cites W2547503455 @default.
- W4385521225 cites W2560136348 @default.
- W4385521225 cites W2560662722 @default.
- W4385521225 cites W2744274567 @default.
- W4385521225 cites W2776946813 @default.
- W4385521225 cites W2787894218 @default.
- W4385521225 cites W2805237548 @default.
- W4385521225 cites W2810511505 @default.
- W4385521225 cites W2884804349 @default.
- W4385521225 cites W2888254195 @default.
- W4385521225 cites W2907554860 @default.
- W4385521225 cites W2911964244 @default.
- W4385521225 cites W2945091780 @default.
- W4385521225 cites W2945404821 @default.
- W4385521225 cites W2948056727 @default.
- W4385521225 cites W2953522645 @default.
- W4385521225 cites W2974159646 @default.
- W4385521225 cites W2996717911 @default.
- W4385521225 cites W3019193937 @default.
- W4385521225 cites W3031627894 @default.
- W4385521225 cites W3035517615 @default.
- W4385521225 cites W3043210715 @default.
- W4385521225 cites W3043698154 @default.
- W4385521225 cites W3046858608 @default.
- W4385521225 cites W3099802519 @default.
- W4385521225 cites W3100279624 @default.
- W4385521225 cites W3102027041 @default.
- W4385521225 cites W3102476541 @default.
- W4385521225 cites W3119809428 @default.
- W4385521225 cites W3121452939 @default.
- W4385521225 cites W3133894893 @default.
- W4385521225 cites W3137125108 @default.
- W4385521225 cites W3158572575 @default.
- W4385521225 cites W3170561227 @default.
- W4385521225 cites W4205411395 @default.
- W4385521225 cites W4211209158 @default.
- W4385521225 cites W4212796187 @default.
- W4385521225 cites W4212844647 @default.
- W4385521225 cites W4212883601 @default.
- W4385521225 cites W4235256446 @default.
- W4385521225 cites W4283693641 @default.
- W4385521225 cites W4289262022 @default.
- W4385521225 cites W4294541781 @default.
- W4385521225 cites W4296558598 @default.
- W4385521225 cites W429766147 @default.
- W4385521225 cites W4379184551 @default.
- W4385521225 doi "https://doi.org/10.1177/25152459231162559" @default.
- W4385521225 hasPublicationYear "2023" @default.
- W4385521225 type Work @default.
- W4385521225 citedByCount "1" @default.
- W4385521225 crossrefType "journal-article" @default.
- W4385521225 hasAuthorship W4385521225A5016933037 @default.
- W4385521225 hasAuthorship W4385521225A5034735453 @default.
- W4385521225 hasAuthorship W4385521225A5048056611 @default.
- W4385521225 hasBestOaLocation W43855212251 @default.
- W4385521225 hasConcept C119857082 @default.
- W4385521225 hasConcept C121955636 @default.
- W4385521225 hasConcept C124101348 @default.
- W4385521225 hasConcept C13280743 @default.
- W4385521225 hasConcept C138885662 @default.
- W4385521225 hasConcept C144133560 @default.
- W4385521225 hasConcept C150921843 @default.
- W4385521225 hasConcept C154945302 @default.
- W4385521225 hasConcept C169258074 @default.
- W4385521225 hasConcept C177264268 @default.
- W4385521225 hasConcept C185798385 @default.
- W4385521225 hasConcept C196083921 @default.
- W4385521225 hasConcept C199360897 @default.
- W4385521225 hasConcept C204321447 @default.
- W4385521225 hasConcept C205649164 @default.
- W4385521225 hasConcept C41008148 @default.