Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385521781> ?p ?o ?g. }
- W4385521781 endingPage "22018" @default.
- W4385521781 startingPage "22006" @default.
- W4385521781 abstract "The recognition of blast furnace iron-tapping status is crucial for improving the production efficiency and quality of ironmaking plants. However, traditional manual observation methods face interference from a large amount of iron powder and other dust in the environment, as well as problems such as iron splashing during tapping, making it difficult to achieve accurate real-time recognition. In addition, the liquid-level detection required for automatic recognition of iron-tapping status is also affected by factors such as iron splashing and foam, surface oxidation, and slag skin, making it impossible to accurately identify the iron-tapping status. These issues highlight the urgency of developing innovative identification methods. To address this, this study collected 2 million continuous three-month field liquid-level data, and constructed a time-series dataset of iron-tapping liquid levels through data slicing. Based on deep learning, a hybrid neural network model of bidirectional gated recurrent units (Bi-GRUs) and attention mechanism was designed to extract the features of iron-tapping iron water status for state recognition, and then a post-processing classifier was designed and introduced for multipoint judgment. Finally, an iron-tapping status recognition accuracy of 98.1% was achieved in on-site applications. The application results show that the deep learning-based blast furnace iron-tapping state recognition technology proposed in this study can achieve high-precision and strong adaptability recognition under the harsh blast furnace iron-tapping environment in ironmaking plants. This technology not only improves production efficiency and quality but also avoids human interference, reduces labor costs, and is of great significance for intelligent metallurgical production." @default.
- W4385521781 created "2023-08-04" @default.
- W4385521781 creator A5009000845 @default.
- W4385521781 creator A5017014714 @default.
- W4385521781 creator A5019515444 @default.
- W4385521781 creator A5032189208 @default.
- W4385521781 creator A5035977310 @default.
- W4385521781 creator A5043787713 @default.
- W4385521781 creator A5048995986 @default.
- W4385521781 date "2023-09-15" @default.
- W4385521781 modified "2023-09-27" @default.
- W4385521781 title "Iron-Tapping State Recognition of Blast Furnace Based on Bi-GRU Composite Model and Post-Processing Classifier" @default.
- W4385521781 cites W1901616594 @default.
- W4385521781 cites W1984792953 @default.
- W4385521781 cites W1987552279 @default.
- W4385521781 cites W2028140375 @default.
- W4385521781 cites W2076063813 @default.
- W4385521781 cites W2104696508 @default.
- W4385521781 cites W2169818249 @default.
- W4385521781 cites W2316030966 @default.
- W4385521781 cites W2531115766 @default.
- W4385521781 cites W2533800772 @default.
- W4385521781 cites W2546208914 @default.
- W4385521781 cites W2611630087 @default.
- W4385521781 cites W2622826443 @default.
- W4385521781 cites W2740570963 @default.
- W4385521781 cites W2783471871 @default.
- W4385521781 cites W2790674448 @default.
- W4385521781 cites W2884001105 @default.
- W4385521781 cites W2892035503 @default.
- W4385521781 cites W2896026565 @default.
- W4385521781 cites W2899125647 @default.
- W4385521781 cites W2900732764 @default.
- W4385521781 cites W2902418758 @default.
- W4385521781 cites W2919115771 @default.
- W4385521781 cites W2919358988 @default.
- W4385521781 cites W2949486200 @default.
- W4385521781 cites W2963853051 @default.
- W4385521781 cites W2991497978 @default.
- W4385521781 cites W2999710845 @default.
- W4385521781 cites W3009685637 @default.
- W4385521781 cites W3038274881 @default.
- W4385521781 cites W3095844753 @default.
- W4385521781 cites W3111221273 @default.
- W4385521781 cites W3126645581 @default.
- W4385521781 cites W3137262131 @default.
- W4385521781 cites W3157698638 @default.
- W4385521781 cites W3162993161 @default.
- W4385521781 cites W3186446777 @default.
- W4385521781 cites W3207162706 @default.
- W4385521781 cites W4311897894 @default.
- W4385521781 cites W4311968544 @default.
- W4385521781 cites W4320481013 @default.
- W4385521781 doi "https://doi.org/10.1109/jsen.2023.3300123" @default.
- W4385521781 hasPublicationYear "2023" @default.
- W4385521781 type Work @default.
- W4385521781 citedByCount "0" @default.
- W4385521781 crossrefType "journal-article" @default.
- W4385521781 hasAuthorship W4385521781A5009000845 @default.
- W4385521781 hasAuthorship W4385521781A5017014714 @default.
- W4385521781 hasAuthorship W4385521781A5019515444 @default.
- W4385521781 hasAuthorship W4385521781A5032189208 @default.
- W4385521781 hasAuthorship W4385521781A5035977310 @default.
- W4385521781 hasAuthorship W4385521781A5043787713 @default.
- W4385521781 hasAuthorship W4385521781A5048995986 @default.
- W4385521781 hasConcept C108583219 @default.
- W4385521781 hasConcept C127413603 @default.
- W4385521781 hasConcept C149499870 @default.
- W4385521781 hasConcept C153180895 @default.
- W4385521781 hasConcept C154945302 @default.
- W4385521781 hasConcept C191897082 @default.
- W4385521781 hasConcept C192562407 @default.
- W4385521781 hasConcept C2777644245 @default.
- W4385521781 hasConcept C2779748816 @default.
- W4385521781 hasConcept C2780269488 @default.
- W4385521781 hasConcept C2781409005 @default.
- W4385521781 hasConcept C2992114214 @default.
- W4385521781 hasConcept C41008148 @default.
- W4385521781 hasConcept C50644808 @default.
- W4385521781 hasConcept C548259974 @default.
- W4385521781 hasConcept C71924100 @default.
- W4385521781 hasConcept C78519656 @default.
- W4385521781 hasConcept C95623464 @default.
- W4385521781 hasConceptScore W4385521781C108583219 @default.
- W4385521781 hasConceptScore W4385521781C127413603 @default.
- W4385521781 hasConceptScore W4385521781C149499870 @default.
- W4385521781 hasConceptScore W4385521781C153180895 @default.
- W4385521781 hasConceptScore W4385521781C154945302 @default.
- W4385521781 hasConceptScore W4385521781C191897082 @default.
- W4385521781 hasConceptScore W4385521781C192562407 @default.
- W4385521781 hasConceptScore W4385521781C2777644245 @default.
- W4385521781 hasConceptScore W4385521781C2779748816 @default.
- W4385521781 hasConceptScore W4385521781C2780269488 @default.
- W4385521781 hasConceptScore W4385521781C2781409005 @default.
- W4385521781 hasConceptScore W4385521781C2992114214 @default.
- W4385521781 hasConceptScore W4385521781C41008148 @default.
- W4385521781 hasConceptScore W4385521781C50644808 @default.
- W4385521781 hasConceptScore W4385521781C548259974 @default.