Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385526263> ?p ?o ?g. }
- W4385526263 abstract "<div>The transport sector is one of the major parties responsible for carbon dioxide (CO<sub>2</sub>) and pollutants emissions in Europe. For this reason, one of the main commitments of the European Commission is its decarbonization by 2035/2040. To achieve this target, during the last decades, different propulsion technologies were developed such as hybrid electric vehicles (HEVs), plug-in electric vehicles (PHEVs), and battery electric vehicles (BEV). The first two proposals can be considered as bridging technology between the internal combustion engine (ICE) and the BEV because they offer at the same time comparable performance as conventional powertrains and improved efficiency. However, both technologies are struggling with the tightening of pollutants and CO<sub>2</sub> limits. On the other hand, the BEV can offer zero emissions at the tailpipe, but it suffers from limited range capabilities and the lack of fast-charging infrastructures. Within this context, the fuel cell vehicle (FCV) appears as an interesting opportunity because it offers zero tailpipe emissions and equivalent refuelling time of the ICE. This article evaluates through mathematical simulations the performance of two fuel cell electric buses (FCEBs), which are supposed to work respectively in urban and highway driving conditions. The urban bus is equipped with a single fuel cell (FC) module of 85 kW-Net and an electric motor (EM) of 225 kW. The intercity bus is equipped with two FC modules with a total power of 170 kW-Net and two EMs of 225 kW each. A sensitivity to the battery capacity from 20 kWh to 40 kWh was performed for both FECBs. The power split between the FC module and the high-voltage battery was optimized with the Equivalent Consumption Minimization Strategy (ECMS). The two FCEBs were tested considering different portfolios of cycles: in the case of the urban bus in Braunschweig and the Standardized On-Road Test Cycles SORT1 and SORT2 were assumed as a reference, while cycles like the Highway Fuel Economy Test (HWFET), European Transient Cycle (ETC), and cruising at 100 km/h were assumed as reference for the intercity. Simulation results highlighted that the increase of battery capacity in the case of the urban bus from 20 kWh to 30 kWh reduces hydrogen (H<sub>2</sub>) consumption by 11% along the Braunschweig cycle. On the other hand, in the case of the intercity bus, the fuel consumption is less affected by the increase of capacity in the same range. In this case a reduction of 4.7% is estimated for the HWFET cycle, and it is less than 1% in the case of cruising conditions.</div>" @default.
- W4385526263 created "2023-08-04" @default.
- W4385526263 creator A5033365931 @default.
- W4385526263 creator A5074174668 @default.
- W4385526263 creator A5074447932 @default.
- W4385526263 date "2023-06-22" @default.
- W4385526263 modified "2023-09-23" @default.
- W4385526263 title "Design of Two Fuel Cell Buses for Public Transport According to Two Different Operating Scenarios: Urban and Motorway" @default.
- W4385526263 cites W1145043878 @default.
- W4385526263 cites W1539958469 @default.
- W4385526263 cites W1546841354 @default.
- W4385526263 cites W1550912995 @default.
- W4385526263 cites W2009316776 @default.
- W4385526263 cites W2034636573 @default.
- W4385526263 cites W2048614123 @default.
- W4385526263 cites W2057157575 @default.
- W4385526263 cites W2064946286 @default.
- W4385526263 cites W2083706821 @default.
- W4385526263 cites W2086598194 @default.
- W4385526263 cites W2108720292 @default.
- W4385526263 cites W2131334306 @default.
- W4385526263 cites W2501655773 @default.
- W4385526263 cites W2543537125 @default.
- W4385526263 cites W2559574657 @default.
- W4385526263 cites W2627057877 @default.
- W4385526263 cites W2739653233 @default.
- W4385526263 cites W2762272099 @default.
- W4385526263 cites W2789416411 @default.
- W4385526263 cites W2810781009 @default.
- W4385526263 cites W2882992537 @default.
- W4385526263 cites W2940794154 @default.
- W4385526263 cites W2950833736 @default.
- W4385526263 cites W3031729014 @default.
- W4385526263 cites W3206370860 @default.
- W4385526263 cites W3212828740 @default.
- W4385526263 cites W4205976620 @default.
- W4385526263 cites W4212840895 @default.
- W4385526263 cites W4213428097 @default.
- W4385526263 cites W4293554485 @default.
- W4385526263 cites W4303453740 @default.
- W4385526263 doi "https://doi.org/10.4271/14-13-02-0007" @default.
- W4385526263 hasPublicationYear "2023" @default.
- W4385526263 type Work @default.
- W4385526263 citedByCount "0" @default.
- W4385526263 crossrefType "journal-article" @default.
- W4385526263 hasAuthorship W4385526263A5033365931 @default.
- W4385526263 hasAuthorship W4385526263A5074174668 @default.
- W4385526263 hasAuthorship W4385526263A5074447932 @default.
- W4385526263 hasConcept C1034443 @default.
- W4385526263 hasConcept C105923489 @default.
- W4385526263 hasConcept C110069716 @default.
- W4385526263 hasConcept C113655042 @default.
- W4385526263 hasConcept C118124095 @default.
- W4385526263 hasConcept C118334743 @default.
- W4385526263 hasConcept C119599485 @default.
- W4385526263 hasConcept C121332964 @default.
- W4385526263 hasConcept C127413603 @default.
- W4385526263 hasConcept C144171764 @default.
- W4385526263 hasConcept C146978453 @default.
- W4385526263 hasConcept C151730666 @default.
- W4385526263 hasConcept C163258240 @default.
- W4385526263 hasConcept C171146098 @default.
- W4385526263 hasConcept C178790620 @default.
- W4385526263 hasConcept C185592680 @default.
- W4385526263 hasConcept C18762648 @default.
- W4385526263 hasConcept C204323151 @default.
- W4385526263 hasConcept C2779343474 @default.
- W4385526263 hasConcept C39432304 @default.
- W4385526263 hasConcept C45882903 @default.
- W4385526263 hasConcept C511840579 @default.
- W4385526263 hasConcept C555008776 @default.
- W4385526263 hasConcept C62520636 @default.
- W4385526263 hasConcept C76047896 @default.
- W4385526263 hasConcept C78519656 @default.
- W4385526263 hasConcept C86803240 @default.
- W4385526263 hasConcept C97355855 @default.
- W4385526263 hasConceptScore W4385526263C1034443 @default.
- W4385526263 hasConceptScore W4385526263C105923489 @default.
- W4385526263 hasConceptScore W4385526263C110069716 @default.
- W4385526263 hasConceptScore W4385526263C113655042 @default.
- W4385526263 hasConceptScore W4385526263C118124095 @default.
- W4385526263 hasConceptScore W4385526263C118334743 @default.
- W4385526263 hasConceptScore W4385526263C119599485 @default.
- W4385526263 hasConceptScore W4385526263C121332964 @default.
- W4385526263 hasConceptScore W4385526263C127413603 @default.
- W4385526263 hasConceptScore W4385526263C144171764 @default.
- W4385526263 hasConceptScore W4385526263C146978453 @default.
- W4385526263 hasConceptScore W4385526263C151730666 @default.
- W4385526263 hasConceptScore W4385526263C163258240 @default.
- W4385526263 hasConceptScore W4385526263C171146098 @default.
- W4385526263 hasConceptScore W4385526263C178790620 @default.
- W4385526263 hasConceptScore W4385526263C185592680 @default.
- W4385526263 hasConceptScore W4385526263C18762648 @default.
- W4385526263 hasConceptScore W4385526263C204323151 @default.
- W4385526263 hasConceptScore W4385526263C2779343474 @default.
- W4385526263 hasConceptScore W4385526263C39432304 @default.
- W4385526263 hasConceptScore W4385526263C45882903 @default.
- W4385526263 hasConceptScore W4385526263C511840579 @default.
- W4385526263 hasConceptScore W4385526263C555008776 @default.
- W4385526263 hasConceptScore W4385526263C62520636 @default.