Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385541708> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4385541708 abstract "Laser dicing has been shown to improve the die strength for thin dies compared to standard machine dicing processes. But like blade dicing, or any separation process, the laser dicing process needs to be optimized for a given substrate to obtain the best dicing quality. Optimization of laser dicing process parameters is challenging because the dicing quality can be influenced by multiple parameters, which can either be independent or co-dependent. Practically, in the absence of structured studies, each laser parameter needs to be varied and the output dicing quality is required to be tested to obtain an acceptable dicing process window for any substrate. Such a method needs to be repeated to create new recipes for any change in die thicknesses, back-end-of-line (BEOL) configurations, etc. This approach is ineffective, sub-optimal and time-consuming. In this study, a methodology is developed to systematically study the effect of key laser dicing process parameters on dicing quality using a machine learning algorithm. First, a design of experiments (DoE) is modeled to study six input parameters with ten levels. The levels are carefully designed based on experience, past data, and tool limitations in an effort to further push the boundaries of the current process window. The design space for training and test data is generated using space filling algorithm such as Latin Hypercube. The dicing quality measures such as dicing width and die strength are measured for each iteration and treated as output. Each experiment is repeated 15 times and the mean value of the output parameter is used for training a machine learning model. A random forest-based machine learning algorithm is used to create a surrogate model relating the input and output parameters. Such a model is then used to understand the interactions between input parameters and identify the optimal process window maximizing dicing quality for various sets of input parameter settings. The optimized process parameters are then validated experimentally. The optimized process parameters resulted in increasing the dicing quality compared to the baseline appreciably. This methodology can be extended to any complex, multi-factor dependent separation process to find the optimized process window." @default.
- W4385541708 created "2023-08-04" @default.
- W4385541708 creator A5014705758 @default.
- W4385541708 creator A5023072924 @default.
- W4385541708 creator A5028288672 @default.
- W4385541708 creator A5048992109 @default.
- W4385541708 creator A5049846759 @default.
- W4385541708 creator A5063465527 @default.
- W4385541708 creator A5068016358 @default.
- W4385541708 creator A5087591736 @default.
- W4385541708 date "2023-05-01" @default.
- W4385541708 modified "2023-09-22" @default.
- W4385541708 title "A Methodology to Optimize Laser Dicing Parameters to Maximize Dicing Quality Through Machine Learning" @default.
- W4385541708 cites W2151025666 @default.
- W4385541708 cites W2158143121 @default.
- W4385541708 cites W2742428058 @default.
- W4385541708 cites W2886050754 @default.
- W4385541708 cites W3190675458 @default.
- W4385541708 cites W4249517230 @default.
- W4385541708 cites W4250664506 @default.
- W4385541708 doi "https://doi.org/10.1109/ectc51909.2023.00032" @default.
- W4385541708 hasPublicationYear "2023" @default.
- W4385541708 type Work @default.
- W4385541708 citedByCount "0" @default.
- W4385541708 crossrefType "proceedings-article" @default.
- W4385541708 hasAuthorship W4385541708A5014705758 @default.
- W4385541708 hasAuthorship W4385541708A5023072924 @default.
- W4385541708 hasAuthorship W4385541708A5028288672 @default.
- W4385541708 hasAuthorship W4385541708A5048992109 @default.
- W4385541708 hasAuthorship W4385541708A5049846759 @default.
- W4385541708 hasAuthorship W4385541708A5063465527 @default.
- W4385541708 hasAuthorship W4385541708A5068016358 @default.
- W4385541708 hasAuthorship W4385541708A5087591736 @default.
- W4385541708 hasConcept C111919701 @default.
- W4385541708 hasConcept C127413603 @default.
- W4385541708 hasConcept C160671074 @default.
- W4385541708 hasConcept C165013422 @default.
- W4385541708 hasConcept C192562407 @default.
- W4385541708 hasConcept C199639397 @default.
- W4385541708 hasConcept C41008148 @default.
- W4385541708 hasConcept C49040817 @default.
- W4385541708 hasConcept C78519656 @default.
- W4385541708 hasConcept C98045186 @default.
- W4385541708 hasConceptScore W4385541708C111919701 @default.
- W4385541708 hasConceptScore W4385541708C127413603 @default.
- W4385541708 hasConceptScore W4385541708C160671074 @default.
- W4385541708 hasConceptScore W4385541708C165013422 @default.
- W4385541708 hasConceptScore W4385541708C192562407 @default.
- W4385541708 hasConceptScore W4385541708C199639397 @default.
- W4385541708 hasConceptScore W4385541708C41008148 @default.
- W4385541708 hasConceptScore W4385541708C49040817 @default.
- W4385541708 hasConceptScore W4385541708C78519656 @default.
- W4385541708 hasConceptScore W4385541708C98045186 @default.
- W4385541708 hasLocation W43855417081 @default.
- W4385541708 hasOpenAccess W4385541708 @default.
- W4385541708 hasPrimaryLocation W43855417081 @default.
- W4385541708 hasRelatedWork W2110784035 @default.
- W4385541708 hasRelatedWork W2168348385 @default.
- W4385541708 hasRelatedWork W2265330654 @default.
- W4385541708 hasRelatedWork W2488054219 @default.
- W4385541708 hasRelatedWork W2899084033 @default.
- W4385541708 hasRelatedWork W293942573 @default.
- W4385541708 hasRelatedWork W2970266003 @default.
- W4385541708 hasRelatedWork W327425532 @default.
- W4385541708 hasRelatedWork W4213132161 @default.
- W4385541708 hasRelatedWork W4281685712 @default.
- W4385541708 isParatext "false" @default.
- W4385541708 isRetracted "false" @default.
- W4385541708 workType "article" @default.