Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385551344> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4385551344 endingPage "7" @default.
- W4385551344 startingPage "1" @default.
- W4385551344 abstract "Long wait times for elective surgery have not only caused patients to continue to live with inconvenience or pain but also creates frustrations and dissatisfaction with the local hospitals and healthcare systems. To deal with the increasing demand, hospitals need to be able to accurately predict the future demand to properly equip their facilities and the number of staff. In this paper, we propose various ARIMA-Machine Learning hybrid models to predict future elective surgery wait list demand. The goal of this paper is to improve the future demand predictions for hospital elective surgeries. We also compare our hybrid model to ARIMA and various Machine Learning/Deep Learning models, such as ANN, LSTM, and Random Forest. We found that ARIMA-ANN performed best with MAE of 0.26-0.76 and MSE of 0.13-1.05 with two-week-forward Urology, Orthopaedics and Gynecology elective surgery data." @default.
- W4385551344 created "2023-08-04" @default.
- W4385551344 creator A5001699541 @default.
- W4385551344 creator A5037386946 @default.
- W4385551344 creator A5081896514 @default.
- W4385551344 creator A5089476547 @default.
- W4385551344 date "2023-08-02" @default.
- W4385551344 modified "2023-10-14" @default.
- W4385551344 title "Forecasting Elective Surgery Demand Using ARIMA-Machine Learning Hybrid Model" @default.
- W4385551344 cites W2009588584 @default.
- W4385551344 cites W2623071993 @default.
- W4385551344 cites W2745005834 @default.
- W4385551344 cites W3012430827 @default.
- W4385551344 cites W3021632058 @default.
- W4385551344 cites W3206101061 @default.
- W4385551344 cites W4200425974 @default.
- W4385551344 doi "https://doi.org/10.24018/ejai.2023.2.3.19" @default.
- W4385551344 hasPublicationYear "2023" @default.
- W4385551344 type Work @default.
- W4385551344 citedByCount "0" @default.
- W4385551344 crossrefType "journal-article" @default.
- W4385551344 hasAuthorship W4385551344A5001699541 @default.
- W4385551344 hasAuthorship W4385551344A5037386946 @default.
- W4385551344 hasAuthorship W4385551344A5081896514 @default.
- W4385551344 hasAuthorship W4385551344A5089476547 @default.
- W4385551344 hasBestOaLocation W43855513441 @default.
- W4385551344 hasConcept C119857082 @default.
- W4385551344 hasConcept C127413603 @default.
- W4385551344 hasConcept C141071460 @default.
- W4385551344 hasConcept C151406439 @default.
- W4385551344 hasConcept C154945302 @default.
- W4385551344 hasConcept C193809577 @default.
- W4385551344 hasConcept C21547014 @default.
- W4385551344 hasConcept C24338571 @default.
- W4385551344 hasConcept C2781312054 @default.
- W4385551344 hasConcept C2983523559 @default.
- W4385551344 hasConcept C41008148 @default.
- W4385551344 hasConcept C42475967 @default.
- W4385551344 hasConcept C49774154 @default.
- W4385551344 hasConcept C61434518 @default.
- W4385551344 hasConcept C68312169 @default.
- W4385551344 hasConcept C71924100 @default.
- W4385551344 hasConceptScore W4385551344C119857082 @default.
- W4385551344 hasConceptScore W4385551344C127413603 @default.
- W4385551344 hasConceptScore W4385551344C141071460 @default.
- W4385551344 hasConceptScore W4385551344C151406439 @default.
- W4385551344 hasConceptScore W4385551344C154945302 @default.
- W4385551344 hasConceptScore W4385551344C193809577 @default.
- W4385551344 hasConceptScore W4385551344C21547014 @default.
- W4385551344 hasConceptScore W4385551344C24338571 @default.
- W4385551344 hasConceptScore W4385551344C2781312054 @default.
- W4385551344 hasConceptScore W4385551344C2983523559 @default.
- W4385551344 hasConceptScore W4385551344C41008148 @default.
- W4385551344 hasConceptScore W4385551344C42475967 @default.
- W4385551344 hasConceptScore W4385551344C49774154 @default.
- W4385551344 hasConceptScore W4385551344C61434518 @default.
- W4385551344 hasConceptScore W4385551344C68312169 @default.
- W4385551344 hasConceptScore W4385551344C71924100 @default.
- W4385551344 hasIssue "3" @default.
- W4385551344 hasLocation W43855513441 @default.
- W4385551344 hasOpenAccess W4385551344 @default.
- W4385551344 hasPrimaryLocation W43855513441 @default.
- W4385551344 hasRelatedWork W179828053 @default.
- W4385551344 hasRelatedWork W2017235719 @default.
- W4385551344 hasRelatedWork W2055064128 @default.
- W4385551344 hasRelatedWork W2143732059 @default.
- W4385551344 hasRelatedWork W2155498013 @default.
- W4385551344 hasRelatedWork W2353398671 @default.
- W4385551344 hasRelatedWork W2409452098 @default.
- W4385551344 hasRelatedWork W3020815816 @default.
- W4385551344 hasRelatedWork W3031225824 @default.
- W4385551344 hasRelatedWork W76874415 @default.
- W4385551344 hasVolume "2" @default.
- W4385551344 isParatext "false" @default.
- W4385551344 isRetracted "false" @default.
- W4385551344 workType "article" @default.