Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385551808> ?p ?o ?g. }
- W4385551808 abstract "Abstract The development of a reference atlas of the healthy human body requires automated image segmentation of major anatomical structures across multiple organs based on spatial bioimages generated from various sources with differences in sample preparation. We present the setup and results of the Hacking the Human Body machine learning algorithm development competition hosted by the Human Biomolecular Atlas (HuBMAP) and the Human Protein Atlas (HPA) teams on the Kaggle platform. We create a dataset containing 880 histology images with 12,901 segmented structures, engaging 1175 teams from 78 countries in community-driven, open-science development of machine learning models. Tissue variations in the dataset pose a major challenge to the teams which they overcome by using color normalization techniques and combining vision transformers with convolutional models. The best model will be productized in the HuBMAP portal to process tissue image datasets at scale in support of Human Reference Atlas construction." @default.
- W4385551808 created "2023-08-04" @default.
- W4385551808 creator A5027569395 @default.
- W4385551808 creator A5029528576 @default.
- W4385551808 creator A5032752852 @default.
- W4385551808 creator A5052101351 @default.
- W4385551808 creator A5068784452 @default.
- W4385551808 creator A5073818897 @default.
- W4385551808 creator A5075058787 @default.
- W4385551808 creator A5083521507 @default.
- W4385551808 date "2023-08-03" @default.
- W4385551808 modified "2023-10-01" @default.
- W4385551808 title "Segmenting functional tissue units across human organs using community-driven development of generalizable machine learning algorithms" @default.
- W4385551808 cites W1861492603 @default.
- W4385551808 cites W1985514943 @default.
- W4385551808 cites W1987869189 @default.
- W4385551808 cites W2011301426 @default.
- W4385551808 cites W2012034410 @default.
- W4385551808 cites W2123402141 @default.
- W4385551808 cites W2133059825 @default.
- W4385551808 cites W2160754664 @default.
- W4385551808 cites W2168056522 @default.
- W4385551808 cites W2343160907 @default.
- W4385551808 cites W2757254843 @default.
- W4385551808 cites W2902154261 @default.
- W4385551808 cites W2922020904 @default.
- W4385551808 cites W2991083105 @default.
- W4385551808 cites W3026693286 @default.
- W4385551808 cites W3080677331 @default.
- W4385551808 cites W3095093830 @default.
- W4385551808 cites W3099878876 @default.
- W4385551808 cites W3101020973 @default.
- W4385551808 cites W3102660688 @default.
- W4385551808 cites W3103145119 @default.
- W4385551808 cites W3129777601 @default.
- W4385551808 cites W3138516171 @default.
- W4385551808 cites W3150635270 @default.
- W4385551808 cites W3194665638 @default.
- W4385551808 cites W3207867260 @default.
- W4385551808 cites W3212552860 @default.
- W4385551808 cites W3214596602 @default.
- W4385551808 cites W4214709605 @default.
- W4385551808 cites W4231532749 @default.
- W4385551808 cites W4292369513 @default.
- W4385551808 cites W4297977478 @default.
- W4385551808 cites W4320086217 @default.
- W4385551808 cites W4362679702 @default.
- W4385551808 cites W4367000547 @default.
- W4385551808 cites W4368755393 @default.
- W4385551808 cites W4384816663 @default.
- W4385551808 cites W4384816694 @default.
- W4385551808 cites W4384820854 @default.
- W4385551808 cites W4385551808 @default.
- W4385551808 doi "https://doi.org/10.1038/s41467-023-40291-0" @default.
- W4385551808 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37537179" @default.
- W4385551808 hasPublicationYear "2023" @default.
- W4385551808 type Work @default.
- W4385551808 citedByCount "1" @default.
- W4385551808 countsByYear W43855518082023 @default.
- W4385551808 crossrefType "journal-article" @default.
- W4385551808 hasAuthorship W4385551808A5027569395 @default.
- W4385551808 hasAuthorship W4385551808A5029528576 @default.
- W4385551808 hasAuthorship W4385551808A5032752852 @default.
- W4385551808 hasAuthorship W4385551808A5052101351 @default.
- W4385551808 hasAuthorship W4385551808A5068784452 @default.
- W4385551808 hasAuthorship W4385551808A5073818897 @default.
- W4385551808 hasAuthorship W4385551808A5075058787 @default.
- W4385551808 hasAuthorship W4385551808A5083521507 @default.
- W4385551808 hasBestOaLocation W43855518081 @default.
- W4385551808 hasConcept C104317684 @default.
- W4385551808 hasConcept C105702510 @default.
- W4385551808 hasConcept C119857082 @default.
- W4385551808 hasConcept C125308379 @default.
- W4385551808 hasConcept C136886441 @default.
- W4385551808 hasConcept C144024400 @default.
- W4385551808 hasConcept C144133560 @default.
- W4385551808 hasConcept C153180895 @default.
- W4385551808 hasConcept C154945302 @default.
- W4385551808 hasConcept C158163496 @default.
- W4385551808 hasConcept C162853370 @default.
- W4385551808 hasConcept C185592680 @default.
- W4385551808 hasConcept C19165224 @default.
- W4385551808 hasConcept C2776673561 @default.
- W4385551808 hasConcept C31972630 @default.
- W4385551808 hasConcept C41008148 @default.
- W4385551808 hasConcept C55493867 @default.
- W4385551808 hasConcept C6856738 @default.
- W4385551808 hasConcept C71924100 @default.
- W4385551808 hasConcept C89600930 @default.
- W4385551808 hasConceptScore W4385551808C104317684 @default.
- W4385551808 hasConceptScore W4385551808C105702510 @default.
- W4385551808 hasConceptScore W4385551808C119857082 @default.
- W4385551808 hasConceptScore W4385551808C125308379 @default.
- W4385551808 hasConceptScore W4385551808C136886441 @default.
- W4385551808 hasConceptScore W4385551808C144024400 @default.
- W4385551808 hasConceptScore W4385551808C144133560 @default.
- W4385551808 hasConceptScore W4385551808C153180895 @default.
- W4385551808 hasConceptScore W4385551808C154945302 @default.
- W4385551808 hasConceptScore W4385551808C158163496 @default.
- W4385551808 hasConceptScore W4385551808C162853370 @default.