Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385555100> ?p ?o ?g. }
- W4385555100 endingPage "438" @default.
- W4385555100 startingPage "438" @default.
- W4385555100 abstract "With the increasing growth of data dimensionality, feature selection has become a crucial step in a variety of machine learning and data mining applications. In fact, it allows identifying the most important attributes of the task at hand, improving the efficiency, interpretability, and final performance of the induced models. In recent literature, several studies have examined the strengths and weaknesses of the available feature selection methods from different points of view. Still, little work has been performed to investigate how sensitive they are to the presence of noisy instances in the input data. This is the specific field in which our work wants to make a contribution. Indeed, since noise is arguably inevitable in several application scenarios, it would be important to understand the extent to which the different selection heuristics can be affected by noise, in particular class noise (which is more harmful in supervised learning tasks). Such an evaluation may be especially important in the context of class-imbalanced problems, where any perturbation in the set of training records can strongly affect the final selection outcome. In this regard, we provide here a two-fold contribution by presenting (i) a general methodology to evaluate feature selection robustness on class noisy data and (ii) an experimental study that involves different selection methods, both univariate and multivariate. The experiments have been conducted on eight high-dimensional datasets chosen to be representative of different real-world domains, with interesting insights into the intrinsic degree of robustness of the considered selection approaches." @default.
- W4385555100 created "2023-08-04" @default.
- W4385555100 creator A5004152189 @default.
- W4385555100 creator A5092349764 @default.
- W4385555100 creator A5092593291 @default.
- W4385555100 creator A5092593292 @default.
- W4385555100 date "2023-08-03" @default.
- W4385555100 modified "2023-09-25" @default.
- W4385555100 title "An Evaluation of Feature Selection Robustness on Class Noisy Data" @default.
- W4385555100 cites W1963630472 @default.
- W4385555100 cites W1976907427 @default.
- W4385555100 cites W1979205968 @default.
- W4385555100 cites W1992795012 @default.
- W4385555100 cites W1994550352 @default.
- W4385555100 cites W2000771269 @default.
- W4385555100 cites W2014175841 @default.
- W4385555100 cites W2022479766 @default.
- W4385555100 cites W2045219384 @default.
- W4385555100 cites W2056168656 @default.
- W4385555100 cites W2064208261 @default.
- W4385555100 cites W2100074460 @default.
- W4385555100 cites W2103372737 @default.
- W4385555100 cites W2109363337 @default.
- W4385555100 cites W2114767984 @default.
- W4385555100 cites W2116574886 @default.
- W4385555100 cites W2130656427 @default.
- W4385555100 cites W2134389439 @default.
- W4385555100 cites W2143426320 @default.
- W4385555100 cites W2163921091 @default.
- W4385555100 cites W2167460663 @default.
- W4385555100 cites W2172232422 @default.
- W4385555100 cites W2293600471 @default.
- W4385555100 cites W2305610625 @default.
- W4385555100 cites W2744790735 @default.
- W4385555100 cites W2885614550 @default.
- W4385555100 cites W2911964244 @default.
- W4385555100 cites W2937997480 @default.
- W4385555100 cites W2949607402 @default.
- W4385555100 cites W2964278775 @default.
- W4385555100 cites W2997655715 @default.
- W4385555100 cites W3158274860 @default.
- W4385555100 cites W4223522460 @default.
- W4385555100 cites W4285147702 @default.
- W4385555100 cites W575847903 @default.
- W4385555100 doi "https://doi.org/10.3390/info14080438" @default.
- W4385555100 hasPublicationYear "2023" @default.
- W4385555100 type Work @default.
- W4385555100 citedByCount "0" @default.
- W4385555100 crossrefType "journal-article" @default.
- W4385555100 hasAuthorship W4385555100A5004152189 @default.
- W4385555100 hasAuthorship W4385555100A5092349764 @default.
- W4385555100 hasAuthorship W4385555100A5092593291 @default.
- W4385555100 hasAuthorship W4385555100A5092593292 @default.
- W4385555100 hasBestOaLocation W43855551001 @default.
- W4385555100 hasConcept C104317684 @default.
- W4385555100 hasConcept C111030470 @default.
- W4385555100 hasConcept C111919701 @default.
- W4385555100 hasConcept C119857082 @default.
- W4385555100 hasConcept C124101348 @default.
- W4385555100 hasConcept C127705205 @default.
- W4385555100 hasConcept C148483581 @default.
- W4385555100 hasConcept C154945302 @default.
- W4385555100 hasConcept C161584116 @default.
- W4385555100 hasConcept C185592680 @default.
- W4385555100 hasConcept C199163554 @default.
- W4385555100 hasConcept C2781067378 @default.
- W4385555100 hasConcept C41008148 @default.
- W4385555100 hasConcept C55493867 @default.
- W4385555100 hasConcept C63479239 @default.
- W4385555100 hasConceptScore W4385555100C104317684 @default.
- W4385555100 hasConceptScore W4385555100C111030470 @default.
- W4385555100 hasConceptScore W4385555100C111919701 @default.
- W4385555100 hasConceptScore W4385555100C119857082 @default.
- W4385555100 hasConceptScore W4385555100C124101348 @default.
- W4385555100 hasConceptScore W4385555100C127705205 @default.
- W4385555100 hasConceptScore W4385555100C148483581 @default.
- W4385555100 hasConceptScore W4385555100C154945302 @default.
- W4385555100 hasConceptScore W4385555100C161584116 @default.
- W4385555100 hasConceptScore W4385555100C185592680 @default.
- W4385555100 hasConceptScore W4385555100C199163554 @default.
- W4385555100 hasConceptScore W4385555100C2781067378 @default.
- W4385555100 hasConceptScore W4385555100C41008148 @default.
- W4385555100 hasConceptScore W4385555100C55493867 @default.
- W4385555100 hasConceptScore W4385555100C63479239 @default.
- W4385555100 hasIssue "8" @default.
- W4385555100 hasLocation W43855551001 @default.
- W4385555100 hasOpenAccess W4385555100 @default.
- W4385555100 hasPrimaryLocation W43855551001 @default.
- W4385555100 hasRelatedWork W2366596456 @default.
- W4385555100 hasRelatedWork W3006943036 @default.
- W4385555100 hasRelatedWork W3163334550 @default.
- W4385555100 hasRelatedWork W4200027074 @default.
- W4385555100 hasRelatedWork W4200511449 @default.
- W4385555100 hasRelatedWork W4206534706 @default.
- W4385555100 hasRelatedWork W4211177414 @default.
- W4385555100 hasRelatedWork W4229079080 @default.
- W4385555100 hasRelatedWork W4327731234 @default.
- W4385555100 hasRelatedWork W4367462340 @default.