Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385556039> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4385556039 endingPage "919" @default.
- W4385556039 startingPage "919" @default.
- W4385556039 abstract "Computer vision (CV) technology and convolutional neural networks (CNNs) demonstrate superior feature extraction capabilities in the field of bioengineering. However, during the capturing process of finger-vein images, translation can cause a decline in the accuracy rate of the model, making it challenging to apply CNNs to real-time and highly accurate finger-vein recognition in various real-world environments. Moreover, despite CNNs’ high accuracy, CNNs require many parameters, and existing research has confirmed their lack of shift-invariant features. Based on these considerations, this study introduces an improved lightweight convolutional neural network (ILCNN) for finger vein recognition. The proposed model incorporates a diverse branch block (DBB), adaptive polyphase sampling (APS), and coordinate attention mechanism (CoAM) with the aim of improving the model’s performance in accurately identifying finger vein features. To evaluate the effectiveness of the model in finger vein recognition, we employed the finger-vein by university sains malaysia (FV-USM) and PLUSVein dorsal-palmar finger-vein (PLUSVein-FV3) public database for analysis and comparative evaluation with recent research methodologies. The experimental results indicate that the finger vein recognition model proposed in this study achieves an impressive recognition accuracy rate of 99.82% and 95.90% on the FV-USM and PLUSVein-FV3 public databases, respectively, while utilizing just 1.23 million parameters. Moreover, compared to the finger vein recognition approaches proposed in previous studies, the ILCNN introduced in this work demonstrated superior performance." @default.
- W4385556039 created "2023-08-04" @default.
- W4385556039 creator A5033638333 @default.
- W4385556039 creator A5061275507 @default.
- W4385556039 creator A5070037368 @default.
- W4385556039 date "2023-08-03" @default.
- W4385556039 modified "2023-09-26" @default.
- W4385556039 title "Improved Lightweight Convolutional Neural Network for Finger Vein Recognition System" @default.
- W4385556039 cites W2058362416 @default.
- W4385556039 cites W2194775991 @default.
- W4385556039 cites W2752782242 @default.
- W4385556039 cites W2884585870 @default.
- W4385556039 cites W2903189790 @default.
- W4385556039 cites W2962734576 @default.
- W4385556039 cites W2963446712 @default.
- W4385556039 cites W2969985801 @default.
- W4385556039 cites W3021840842 @default.
- W4385556039 cites W3163031514 @default.
- W4385556039 cites W3171038842 @default.
- W4385556039 cites W3175122022 @default.
- W4385556039 cites W3177052299 @default.
- W4385556039 cites W3193705818 @default.
- W4385556039 cites W3199206915 @default.
- W4385556039 cites W3199528201 @default.
- W4385556039 cites W3201590725 @default.
- W4385556039 cites W3201629371 @default.
- W4385556039 cites W3208113363 @default.
- W4385556039 cites W3209010254 @default.
- W4385556039 cites W3212194243 @default.
- W4385556039 cites W3215008223 @default.
- W4385556039 cites W4283788953 @default.
- W4385556039 cites W4285122421 @default.
- W4385556039 doi "https://doi.org/10.3390/bioengineering10080919" @default.
- W4385556039 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37627804" @default.
- W4385556039 hasPublicationYear "2023" @default.
- W4385556039 type Work @default.
- W4385556039 citedByCount "0" @default.
- W4385556039 crossrefType "journal-article" @default.
- W4385556039 hasAuthorship W4385556039A5033638333 @default.
- W4385556039 hasAuthorship W4385556039A5061275507 @default.
- W4385556039 hasAuthorship W4385556039A5070037368 @default.
- W4385556039 hasBestOaLocation W43855560391 @default.
- W4385556039 hasConcept C108583219 @default.
- W4385556039 hasConcept C111919701 @default.
- W4385556039 hasConcept C153180895 @default.
- W4385556039 hasConcept C154945302 @default.
- W4385556039 hasConcept C41008148 @default.
- W4385556039 hasConcept C50644808 @default.
- W4385556039 hasConcept C52622490 @default.
- W4385556039 hasConcept C81363708 @default.
- W4385556039 hasConcept C98045186 @default.
- W4385556039 hasConceptScore W4385556039C108583219 @default.
- W4385556039 hasConceptScore W4385556039C111919701 @default.
- W4385556039 hasConceptScore W4385556039C153180895 @default.
- W4385556039 hasConceptScore W4385556039C154945302 @default.
- W4385556039 hasConceptScore W4385556039C41008148 @default.
- W4385556039 hasConceptScore W4385556039C50644808 @default.
- W4385556039 hasConceptScore W4385556039C52622490 @default.
- W4385556039 hasConceptScore W4385556039C81363708 @default.
- W4385556039 hasConceptScore W4385556039C98045186 @default.
- W4385556039 hasFunder F4320322795 @default.
- W4385556039 hasIssue "8" @default.
- W4385556039 hasLocation W43855560391 @default.
- W4385556039 hasLocation W43855560392 @default.
- W4385556039 hasOpenAccess W4385556039 @default.
- W4385556039 hasPrimaryLocation W43855560391 @default.
- W4385556039 hasRelatedWork W2279398222 @default.
- W4385556039 hasRelatedWork W2731899572 @default.
- W4385556039 hasRelatedWork W3116150086 @default.
- W4385556039 hasRelatedWork W3133861977 @default.
- W4385556039 hasRelatedWork W3156786002 @default.
- W4385556039 hasRelatedWork W4200173597 @default.
- W4385556039 hasRelatedWork W4299822940 @default.
- W4385556039 hasRelatedWork W4312417841 @default.
- W4385556039 hasRelatedWork W4321369474 @default.
- W4385556039 hasRelatedWork W4366492315 @default.
- W4385556039 hasVolume "10" @default.
- W4385556039 isParatext "false" @default.
- W4385556039 isRetracted "false" @default.
- W4385556039 workType "article" @default.