Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385557162> ?p ?o ?g. }
- W4385557162 endingPage "3960" @default.
- W4385557162 startingPage "3960" @default.
- W4385557162 abstract "Breast cancer is the most common type of cancer worldwide. Alarmingly, approximately 30% of breast cancer cases result in disease recurrence at distant organs after treatment. Distant recurrence is more common in some subtypes such as invasive breast carcinoma (IBC). While clinicians have utilized several clinicopathological measurements to predict distant recurrences in IBC, no studies have predicted distant recurrences by combining clinicopathological evaluations of IBC tumors pre- and post-therapy with machine learning (ML) models. The goal of our study was to determine whether classification-based ML techniques could predict distant recurrences in IBC patients using key clinicopathological measurements, including pathological staging of the tumor and surrounding lymph nodes assessed both pre- and post-neoadjuvant therapy, response to therapy via standard-of-care imaging, and binary status of adjuvant therapy administered to patients. We trained and tested four clinicopathological ML models using a dataset (144 and 17 patients for training and testing, respectively) from Duke University and validated the best-performing model using an external dataset (8 patients) from Dartmouth Hitchcock Medical Center. The random forest model performed better than the C-support vector classifier, multilayer perceptron, and logistic regression models, yielding AUC values of 1.0 in the testing set and 0.75 in the validation set (p < 0.002) across both institutions, thereby demonstrating the cross-institutional portability and validity of ML models in the field of clinical research in cancer. The top-ranking clinicopathological measurement impacting the prediction of distant recurrences in IBC were identified to be tumor response to neoadjuvant therapy as evaluated via SOC imaging and pathology, which included tumor as well as node staging." @default.
- W4385557162 created "2023-08-04" @default.
- W4385557162 creator A5009690744 @default.
- W4385557162 creator A5025717679 @default.
- W4385557162 creator A5031660373 @default.
- W4385557162 creator A5086678071 @default.
- W4385557162 date "2023-08-03" @default.
- W4385557162 modified "2023-09-27" @default.
- W4385557162 title "Machine Learning-Based Prediction of Distant Recurrence in Invasive Breast Carcinoma Using Clinicopathological Data: A Cross-Institutional Study" @default.
- W4385557162 cites W1818000388 @default.
- W4385557162 cites W1891489226 @default.
- W4385557162 cites W2042390930 @default.
- W4385557162 cites W2058865073 @default.
- W4385557162 cites W2062152940 @default.
- W4385557162 cites W2083927153 @default.
- W4385557162 cites W2093829133 @default.
- W4385557162 cites W2093921289 @default.
- W4385557162 cites W2096023864 @default.
- W4385557162 cites W2096145980 @default.
- W4385557162 cites W2108043112 @default.
- W4385557162 cites W2111547563 @default.
- W4385557162 cites W2113344831 @default.
- W4385557162 cites W2115813710 @default.
- W4385557162 cites W2147415463 @default.
- W4385557162 cites W2159809499 @default.
- W4385557162 cites W2161397941 @default.
- W4385557162 cites W2560991177 @default.
- W4385557162 cites W2593310480 @default.
- W4385557162 cites W2606386320 @default.
- W4385557162 cites W2607432848 @default.
- W4385557162 cites W2752397617 @default.
- W4385557162 cites W2766525994 @default.
- W4385557162 cites W2779175689 @default.
- W4385557162 cites W2795120383 @default.
- W4385557162 cites W2805734855 @default.
- W4385557162 cites W2808866466 @default.
- W4385557162 cites W2884716214 @default.
- W4385557162 cites W2899471886 @default.
- W4385557162 cites W2917229456 @default.
- W4385557162 cites W2932331988 @default.
- W4385557162 cites W2940689983 @default.
- W4385557162 cites W2944413189 @default.
- W4385557162 cites W2944935818 @default.
- W4385557162 cites W3013582289 @default.
- W4385557162 cites W3020729718 @default.
- W4385557162 cites W3031686826 @default.
- W4385557162 cites W3036334626 @default.
- W4385557162 cites W3094657717 @default.
- W4385557162 cites W3107885361 @default.
- W4385557162 cites W3111509279 @default.
- W4385557162 cites W3117433858 @default.
- W4385557162 cites W3122861570 @default.
- W4385557162 cites W3128646645 @default.
- W4385557162 cites W3138260478 @default.
- W4385557162 cites W4206841660 @default.
- W4385557162 cites W4214659683 @default.
- W4385557162 cites W4292411720 @default.
- W4385557162 cites W4296445148 @default.
- W4385557162 cites W4308885081 @default.
- W4385557162 cites W4313586147 @default.
- W4385557162 cites W4366427607 @default.
- W4385557162 cites W4381597286 @default.
- W4385557162 doi "https://doi.org/10.3390/cancers15153960" @default.
- W4385557162 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37568776" @default.
- W4385557162 hasPublicationYear "2023" @default.
- W4385557162 type Work @default.
- W4385557162 citedByCount "0" @default.
- W4385557162 crossrefType "journal-article" @default.
- W4385557162 hasAuthorship W4385557162A5009690744 @default.
- W4385557162 hasAuthorship W4385557162A5025717679 @default.
- W4385557162 hasAuthorship W4385557162A5031660373 @default.
- W4385557162 hasAuthorship W4385557162A5086678071 @default.
- W4385557162 hasBestOaLocation W43855571621 @default.
- W4385557162 hasConcept C121608353 @default.
- W4385557162 hasConcept C126322002 @default.
- W4385557162 hasConcept C126838900 @default.
- W4385557162 hasConcept C143998085 @default.
- W4385557162 hasConcept C151956035 @default.
- W4385557162 hasConcept C2777982462 @default.
- W4385557162 hasConcept C530470458 @default.
- W4385557162 hasConcept C71924100 @default.
- W4385557162 hasConceptScore W4385557162C121608353 @default.
- W4385557162 hasConceptScore W4385557162C126322002 @default.
- W4385557162 hasConceptScore W4385557162C126838900 @default.
- W4385557162 hasConceptScore W4385557162C143998085 @default.
- W4385557162 hasConceptScore W4385557162C151956035 @default.
- W4385557162 hasConceptScore W4385557162C2777982462 @default.
- W4385557162 hasConceptScore W4385557162C530470458 @default.
- W4385557162 hasConceptScore W4385557162C71924100 @default.
- W4385557162 hasIssue "15" @default.
- W4385557162 hasLocation W43855571621 @default.
- W4385557162 hasLocation W43855571622 @default.
- W4385557162 hasOpenAccess W4385557162 @default.
- W4385557162 hasPrimaryLocation W43855571621 @default.
- W4385557162 hasRelatedWork W2000536166 @default.
- W4385557162 hasRelatedWork W2057553101 @default.
- W4385557162 hasRelatedWork W2079161020 @default.
- W4385557162 hasRelatedWork W2172254302 @default.