Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385562567> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4385562567 abstract "Time series data has become pervasive across domains such as finance, transportation, retail, entertainment, and healthcare. This shift towards continuous monitoring and recording, fueled by advancements in sensing technologies, necessitates the development of new tools and solutions. Despite extensive study, the importance of time series analysis continues to increase. However, modern time series data present challenges to existing techniques, including irregular sampling and spatiotemporal structures. Time series mining research is both challenging and rewarding as it connects diverse disciplines and requires interdisciplinary solutions. The goals of this workshop are to (1) highlight the significant challenges that underpin learning and mining from time series data (e.g., irregular sampling, spatiotemporal structure, uncertainty quantification), (2) discuss recent algorithmic, theoretical, statistical, or systems-based developments for tackling these problems, and (3) to synergize the research activities and discuss both new and open problems in time series analysis and mining. In summary, our workshop will focus on both the theoretical and practical aspects of time series data analysis and will provide a platform for researchers and practitioners from academia and industry to discuss potential research directions and critical technical issues and present solutions to tackle related issues in practical applications. We will invite researchers and practitioners from the related areas of AI, machine learning, data science, statistics, and many others to contribute to this workshop." @default.
- W4385562567 created "2023-08-04" @default.
- W4385562567 creator A5013197657 @default.
- W4385562567 creator A5016749653 @default.
- W4385562567 creator A5017846156 @default.
- W4385562567 creator A5048346353 @default.
- W4385562567 creator A5080409305 @default.
- W4385562567 creator A5081397604 @default.
- W4385562567 date "2023-08-04" @default.
- W4385562567 modified "2023-09-27" @default.
- W4385562567 title "The 9th SIGKDD International Workshop on Mining and Learning from Time Series" @default.
- W4385562567 doi "https://doi.org/10.1145/3580305.3599214" @default.
- W4385562567 hasPublicationYear "2023" @default.
- W4385562567 type Work @default.
- W4385562567 citedByCount "0" @default.
- W4385562567 crossrefType "proceedings-article" @default.
- W4385562567 hasAuthorship W4385562567A5013197657 @default.
- W4385562567 hasAuthorship W4385562567A5016749653 @default.
- W4385562567 hasAuthorship W4385562567A5017846156 @default.
- W4385562567 hasAuthorship W4385562567A5048346353 @default.
- W4385562567 hasAuthorship W4385562567A5080409305 @default.
- W4385562567 hasAuthorship W4385562567A5081397604 @default.
- W4385562567 hasBestOaLocation W43855625671 @default.
- W4385562567 hasConcept C119857082 @default.
- W4385562567 hasConcept C124101348 @default.
- W4385562567 hasConcept C127413603 @default.
- W4385562567 hasConcept C136764020 @default.
- W4385562567 hasConcept C143724316 @default.
- W4385562567 hasConcept C151406439 @default.
- W4385562567 hasConcept C151730666 @default.
- W4385562567 hasConcept C154945302 @default.
- W4385562567 hasConcept C2522767166 @default.
- W4385562567 hasConcept C2778464652 @default.
- W4385562567 hasConcept C41008148 @default.
- W4385562567 hasConcept C539667460 @default.
- W4385562567 hasConcept C75684735 @default.
- W4385562567 hasConcept C86803240 @default.
- W4385562567 hasConceptScore W4385562567C119857082 @default.
- W4385562567 hasConceptScore W4385562567C124101348 @default.
- W4385562567 hasConceptScore W4385562567C127413603 @default.
- W4385562567 hasConceptScore W4385562567C136764020 @default.
- W4385562567 hasConceptScore W4385562567C143724316 @default.
- W4385562567 hasConceptScore W4385562567C151406439 @default.
- W4385562567 hasConceptScore W4385562567C151730666 @default.
- W4385562567 hasConceptScore W4385562567C154945302 @default.
- W4385562567 hasConceptScore W4385562567C2522767166 @default.
- W4385562567 hasConceptScore W4385562567C2778464652 @default.
- W4385562567 hasConceptScore W4385562567C41008148 @default.
- W4385562567 hasConceptScore W4385562567C539667460 @default.
- W4385562567 hasConceptScore W4385562567C75684735 @default.
- W4385562567 hasConceptScore W4385562567C86803240 @default.
- W4385562567 hasLocation W43855625671 @default.
- W4385562567 hasOpenAccess W4385562567 @default.
- W4385562567 hasPrimaryLocation W43855625671 @default.
- W4385562567 hasRelatedWork W1935138864 @default.
- W4385562567 hasRelatedWork W1964982224 @default.
- W4385562567 hasRelatedWork W2080650820 @default.
- W4385562567 hasRelatedWork W2150798635 @default.
- W4385562567 hasRelatedWork W2290480557 @default.
- W4385562567 hasRelatedWork W2608950002 @default.
- W4385562567 hasRelatedWork W2790331597 @default.
- W4385562567 hasRelatedWork W3043006947 @default.
- W4385562567 hasRelatedWork W4313246833 @default.
- W4385562567 hasRelatedWork W4313893854 @default.
- W4385562567 isParatext "false" @default.
- W4385562567 isRetracted "false" @default.
- W4385562567 workType "article" @default.