Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385564482> ?p ?o ?g. }
- W4385564482 abstract "Cancer is a leading cause of death worldwide. While routine diagnosis of cancer is performed mainly with biopsy sampling, it is suboptimal to accurately characterize tumor heterogeneity. Positron emission tomography (PET)-driven radiomic research has demonstrated promising results when predicting clinical endpoints. This study aimed to investigate the added value of quantum machine learning both in simulator and in real quantum computers utilizing error mitigation techniques to predict clinical endpoints in various PET cancer patients.Previously published PET radiomics datasets including 11C-MET PET glioma, 68GA-PSMA-11 PET prostate and lung 18F-FDG PET with 3-year survival, low-vs-high Gleason risk and 2-year survival as clinical endpoints respectively were utilized in this study. Redundancy reduction with 0.7, 0.8, and 0.9 Spearman rank thresholds (SRT), followed by selecting 8 and 16 features from all cohorts, was performed, resulting in 18 dataset variants. Quantum advantage was estimated by Geometric Difference (GDQ) score in each dataset variant. Five classic machine learning (CML) and their quantum versions (QML) were trained and tested in simulator environments across the dataset variants. Quantum circuit optimization and error mitigation were performed, followed by training and testing selected QML methods on the 21-qubit IonQ Aria quantum computer. Predictive performances were estimated by test balanced accuracy (BACC) values.On average, QML outperformed CML in simulator environments with 16-features (BACC 70% and 69%, respectively), while with 8-features, CML outperformed QML with + 1%. The highest average QML advantage was + 4%. The GDQ scores were ≤ 1.0 in all the 8-feature cases, while they were > 1.0 when QML outperformed CML in 9 out of 11 cases. The test BACC of selected QML methods and datasets in the IonQ device without error mitigation (EM) were 69.94% BACC, while EM increased test BACC to 75.66% (76.77% in noiseless simulators).We demonstrated that with error mitigation, quantum advantage can be achieved in real existing quantum computers when predicting clinical endpoints in clinically relevant PET cancer cohorts. Quantum advantage can already be achieved in simulator environments in these cohorts when relying on QML." @default.
- W4385564482 created "2023-08-05" @default.
- W4385564482 creator A5004214923 @default.
- W4385564482 creator A5005313468 @default.
- W4385564482 creator A5006292330 @default.
- W4385564482 creator A5010945408 @default.
- W4385564482 creator A5018488575 @default.
- W4385564482 creator A5023214008 @default.
- W4385564482 creator A5029299182 @default.
- W4385564482 creator A5037124866 @default.
- W4385564482 creator A5048549192 @default.
- W4385564482 creator A5048708393 @default.
- W4385564482 creator A5074803789 @default.
- W4385564482 date "2023-08-04" @default.
- W4385564482 modified "2023-10-18" @default.
- W4385564482 title "Error mitigation enables PET radiomic cancer characterization on quantum computers" @default.
- W4385564482 cites W1663973292 @default.
- W4385564482 cites W1680622244 @default.
- W4385564482 cites W2014999922 @default.
- W4385564482 cites W2096981363 @default.
- W4385564482 cites W2103956991 @default.
- W4385564482 cites W2111084110 @default.
- W4385564482 cites W2153635508 @default.
- W4385564482 cites W2231056033 @default.
- W4385564482 cites W2342603028 @default.
- W4385564482 cites W2409456704 @default.
- W4385564482 cites W2562526363 @default.
- W4385564482 cites W2577453388 @default.
- W4385564482 cites W2768731904 @default.
- W4385564482 cites W2781738013 @default.
- W4385564482 cites W2792946961 @default.
- W4385564482 cites W2795095398 @default.
- W4385564482 cites W2796293949 @default.
- W4385564482 cites W2798434869 @default.
- W4385564482 cites W2800232471 @default.
- W4385564482 cites W2811032035 @default.
- W4385564482 cites W2888774813 @default.
- W4385564482 cites W2923370183 @default.
- W4385564482 cites W3013294478 @default.
- W4385564482 cites W3032938107 @default.
- W4385564482 cites W3046974701 @default.
- W4385564482 cites W3098581063 @default.
- W4385564482 cites W3103872322 @default.
- W4385564482 cites W3115784662 @default.
- W4385564482 cites W3129458892 @default.
- W4385564482 cites W3136520784 @default.
- W4385564482 cites W3189829096 @default.
- W4385564482 cites W3211386740 @default.
- W4385564482 cites W3211718387 @default.
- W4385564482 cites W4211049957 @default.
- W4385564482 cites W4225353299 @default.
- W4385564482 cites W4226239200 @default.
- W4385564482 cites W4288060250 @default.
- W4385564482 cites W4296126438 @default.
- W4385564482 cites W4304166164 @default.
- W4385564482 cites W4306641063 @default.
- W4385564482 cites W4307995537 @default.
- W4385564482 doi "https://doi.org/10.1007/s00259-023-06362-6" @default.
- W4385564482 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37540237" @default.
- W4385564482 hasPublicationYear "2023" @default.
- W4385564482 type Work @default.
- W4385564482 citedByCount "0" @default.
- W4385564482 crossrefType "journal-article" @default.
- W4385564482 hasAuthorship W4385564482A5004214923 @default.
- W4385564482 hasAuthorship W4385564482A5005313468 @default.
- W4385564482 hasAuthorship W4385564482A5006292330 @default.
- W4385564482 hasAuthorship W4385564482A5010945408 @default.
- W4385564482 hasAuthorship W4385564482A5018488575 @default.
- W4385564482 hasAuthorship W4385564482A5023214008 @default.
- W4385564482 hasAuthorship W4385564482A5029299182 @default.
- W4385564482 hasAuthorship W4385564482A5037124866 @default.
- W4385564482 hasAuthorship W4385564482A5048549192 @default.
- W4385564482 hasAuthorship W4385564482A5048708393 @default.
- W4385564482 hasAuthorship W4385564482A5074803789 @default.
- W4385564482 hasBestOaLocation W43855644821 @default.
- W4385564482 hasConcept C105795698 @default.
- W4385564482 hasConcept C11413529 @default.
- W4385564482 hasConcept C143998085 @default.
- W4385564482 hasConcept C2775842073 @default.
- W4385564482 hasConcept C2776256026 @default.
- W4385564482 hasConcept C2989005 @default.
- W4385564482 hasConcept C33923547 @default.
- W4385564482 hasConcept C41008148 @default.
- W4385564482 hasConcept C71924100 @default.
- W4385564482 hasConceptScore W4385564482C105795698 @default.
- W4385564482 hasConceptScore W4385564482C11413529 @default.
- W4385564482 hasConceptScore W4385564482C143998085 @default.
- W4385564482 hasConceptScore W4385564482C2775842073 @default.
- W4385564482 hasConceptScore W4385564482C2776256026 @default.
- W4385564482 hasConceptScore W4385564482C2989005 @default.
- W4385564482 hasConceptScore W4385564482C33923547 @default.
- W4385564482 hasConceptScore W4385564482C41008148 @default.
- W4385564482 hasConceptScore W4385564482C71924100 @default.
- W4385564482 hasFunder F4320323437 @default.
- W4385564482 hasLocation W43855644821 @default.
- W4385564482 hasLocation W43855644822 @default.
- W4385564482 hasOpenAccess W4385564482 @default.
- W4385564482 hasPrimaryLocation W43855644821 @default.
- W4385564482 hasRelatedWork W1967103478 @default.
- W4385564482 hasRelatedWork W1970517682 @default.