Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385567904> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4385567904 abstract "Survival analysis, aka time-to-event analysis, has a wide-ranging impact on patient care. Federated Survival Analysis (FSA) is an emerging Federated Learning (FL) paradigm for performing survival analysis on distributed decentralized data available at multiple medical institutions. FSA enables individual medical institutions, referred to as clients, to improve their survival predictions while ensuring privacy. However, FSA faces challenges due to non-linear and non-IID data distributions among clients, as well as bias caused by censoring. Although recent studies have adapted Cox Proportional Hazards (CoxPH) survival models for FSA, a systematic exploration of these challenges is currently lacking. In this paper, we address these critical challenges by introducing FedPseudo, a pseudo value-based deep learning framework for FSA. FedPseudo uses deep learning models to learn robust representations from non-linear survival data, leverages the power of pseudo values to handle non-uniform censoring, and employs FL algorithms such as FedAvg to learn model parameters. We propose a novel and simple approach for estimating pseudo values for FSA. We provide theoretical proof that the estimated pseudo values, referred to as Federated Pseudo Values, are consistent. Moreover, our empirical results demonstrate that they can be computed faster than traditional methods of deriving pseudo values. To ensure and enhance the privacy of both the estimated pseudo values and the shared model parameters, we systematically investigate the application of differential privacy (DP) on both the federated pseudo values and local model updates. Furthermore, we adapt V -Usable Information metric to quantify the informativeness of a client's data for training a survival model and utilize this metric to show the advantages of participating in FSA. We conducted extensive experiments on synthetic and real-world survival datasets to demonstrate that our FedPseudo framework achieves better performance than other FSA approaches and performs similarly to the best centrally trained deep survival model. Moreover, FedPseudo consistently achieves superior results across different censoring settings." @default.
- W4385567904 created "2023-08-05" @default.
- W4385567904 creator A5017846156 @default.
- W4385567904 creator A5062222645 @default.
- W4385567904 date "2023-08-04" @default.
- W4385567904 modified "2023-09-27" @default.
- W4385567904 title "FedPseudo: Privacy-Preserving Pseudo Value-Based Deep Learning Models for Federated Survival Analysis" @default.
- W4385567904 cites W2005895632 @default.
- W4385567904 cites W2019097437 @default.
- W4385567904 cites W2051267297 @default.
- W4385567904 cites W2052941532 @default.
- W4385567904 cites W2110992644 @default.
- W4385567904 cites W2236833089 @default.
- W4385567904 cites W2253350979 @default.
- W4385567904 cites W2535690855 @default.
- W4385567904 cites W2930926105 @default.
- W4385567904 cites W2963456518 @default.
- W4385567904 cites W2990105411 @default.
- W4385567904 cites W3011327820 @default.
- W4385567904 cites W3086590218 @default.
- W4385567904 cites W3099478002 @default.
- W4385567904 cites W3147894994 @default.
- W4385567904 cites W3174860495 @default.
- W4385567904 cites W3200067809 @default.
- W4385567904 cites W3215019056 @default.
- W4385567904 cites W4292967441 @default.
- W4385567904 cites W4293241248 @default.
- W4385567904 cites W4293812156 @default.
- W4385567904 doi "https://doi.org/10.1145/3580305.3599348" @default.
- W4385567904 hasPublicationYear "2023" @default.
- W4385567904 type Work @default.
- W4385567904 citedByCount "0" @default.
- W4385567904 crossrefType "proceedings-article" @default.
- W4385567904 hasAuthorship W4385567904A5017846156 @default.
- W4385567904 hasAuthorship W4385567904A5062222645 @default.
- W4385567904 hasBestOaLocation W43855679041 @default.
- W4385567904 hasConcept C119857082 @default.
- W4385567904 hasConcept C123201435 @default.
- W4385567904 hasConcept C124101348 @default.
- W4385567904 hasConcept C136764020 @default.
- W4385567904 hasConcept C137668524 @default.
- W4385567904 hasConcept C149782125 @default.
- W4385567904 hasConcept C154945302 @default.
- W4385567904 hasConcept C162324750 @default.
- W4385567904 hasConcept C176217482 @default.
- W4385567904 hasConcept C21547014 @default.
- W4385567904 hasConcept C23130292 @default.
- W4385567904 hasConcept C2780615836 @default.
- W4385567904 hasConcept C38652104 @default.
- W4385567904 hasConcept C41008148 @default.
- W4385567904 hasConceptScore W4385567904C119857082 @default.
- W4385567904 hasConceptScore W4385567904C123201435 @default.
- W4385567904 hasConceptScore W4385567904C124101348 @default.
- W4385567904 hasConceptScore W4385567904C136764020 @default.
- W4385567904 hasConceptScore W4385567904C137668524 @default.
- W4385567904 hasConceptScore W4385567904C149782125 @default.
- W4385567904 hasConceptScore W4385567904C154945302 @default.
- W4385567904 hasConceptScore W4385567904C162324750 @default.
- W4385567904 hasConceptScore W4385567904C176217482 @default.
- W4385567904 hasConceptScore W4385567904C21547014 @default.
- W4385567904 hasConceptScore W4385567904C23130292 @default.
- W4385567904 hasConceptScore W4385567904C2780615836 @default.
- W4385567904 hasConceptScore W4385567904C38652104 @default.
- W4385567904 hasConceptScore W4385567904C41008148 @default.
- W4385567904 hasFunder F4320306076 @default.
- W4385567904 hasLocation W43855679041 @default.
- W4385567904 hasOpenAccess W4385567904 @default.
- W4385567904 hasPrimaryLocation W43855679041 @default.
- W4385567904 hasRelatedWork W1990534671 @default.
- W4385567904 hasRelatedWork W2272113230 @default.
- W4385567904 hasRelatedWork W2891542592 @default.
- W4385567904 hasRelatedWork W2961085424 @default.
- W4385567904 hasRelatedWork W2969945192 @default.
- W4385567904 hasRelatedWork W3005947044 @default.
- W4385567904 hasRelatedWork W3135353679 @default.
- W4385567904 hasRelatedWork W4306674287 @default.
- W4385567904 hasRelatedWork W4377712905 @default.
- W4385567904 hasRelatedWork W4383469366 @default.
- W4385567904 isParatext "false" @default.
- W4385567904 isRetracted "false" @default.
- W4385567904 workType "article" @default.