Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385569672> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4385569672 endingPage "15" @default.
- W4385569672 startingPage "1" @default.
- W4385569672 abstract "A network of distributed radar nodes can significantly improve detection, parameter estimation, and tracking capabilities of a single platform-based radar systems. Optimum allocation of bandwidths and carrier frequencies to these nodes is an important non-trivial research problem. A simple way of equally dividing the available bandwidth among radar nodes can become highly suboptimal. In this paper, we propose both model- and deep learning-based joint bandwidth and carrier frequency allocation algorithms for a network consisting of a central coordinator and distributed radar nodes, each operating in a monostatic mode. With an objective of enabling poor performing radar nodes, that observe low target signal-to-noise-interference ratio (SINR) values, benefit from distributed collaboration, we propose model-based <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>max-min</i> approach, in which we maximize the minimum of the SINRs observed by all nodes, under total bandwidth and individual node's range resolution (RR) constraints. This optimization is non-convex, but we solve it efficiently utilizing an explicit relationship between bandwidth and carrier frequencies, and the fact that each node's SINR is a monotonically decreasing function of bandwidth and carrier frequency allocated to the node. We propose two iterative optimization methods that employ successive convex approximation with a) semidefinite programming (SDP) and b) geometric programming (GP) problem formulations. Computer simulations show the performance of the proposed methods under different RR requirements, which significantly outperform the equal bandwidth allocation (EBWA) method and enable poor performing nodes to enhance their individual SINRs significantly. The solutions of this model-based optimization and target locations are then used, respectively, as labels and input, to train a bidirectional long short-term memory (LSTM) network. The trained network can significantly reduce the online run-time complexity of the bandwidth and carrier frequency allocation in distributed radar networks." @default.
- W4385569672 created "2023-08-05" @default.
- W4385569672 creator A5003557355 @default.
- W4385569672 creator A5013112758 @default.
- W4385569672 creator A5045799487 @default.
- W4385569672 date "2023-01-01" @default.
- W4385569672 modified "2023-10-03" @default.
- W4385569672 title "Model- and Deep Learning-based Bandwidth and Carrier Frequency Allocation in Distributed Radar Networks" @default.
- W4385569672 doi "https://doi.org/10.1109/taes.2023.3301827" @default.
- W4385569672 hasPublicationYear "2023" @default.
- W4385569672 type Work @default.
- W4385569672 citedByCount "0" @default.
- W4385569672 crossrefType "journal-article" @default.
- W4385569672 hasAuthorship W4385569672A5003557355 @default.
- W4385569672 hasAuthorship W4385569672A5013112758 @default.
- W4385569672 hasAuthorship W4385569672A5045799487 @default.
- W4385569672 hasConcept C101901036 @default.
- W4385569672 hasConcept C112680207 @default.
- W4385569672 hasConcept C11413529 @default.
- W4385569672 hasConcept C119857082 @default.
- W4385569672 hasConcept C120314980 @default.
- W4385569672 hasConcept C126255220 @default.
- W4385569672 hasConcept C130120984 @default.
- W4385569672 hasConcept C137836250 @default.
- W4385569672 hasConcept C145062175 @default.
- W4385569672 hasConcept C157972887 @default.
- W4385569672 hasConcept C200157131 @default.
- W4385569672 hasConcept C20729856 @default.
- W4385569672 hasConcept C2524010 @default.
- W4385569672 hasConcept C2776257435 @default.
- W4385569672 hasConcept C31258907 @default.
- W4385569672 hasConcept C33923547 @default.
- W4385569672 hasConcept C41008148 @default.
- W4385569672 hasConcept C554190296 @default.
- W4385569672 hasConcept C76155785 @default.
- W4385569672 hasConceptScore W4385569672C101901036 @default.
- W4385569672 hasConceptScore W4385569672C112680207 @default.
- W4385569672 hasConceptScore W4385569672C11413529 @default.
- W4385569672 hasConceptScore W4385569672C119857082 @default.
- W4385569672 hasConceptScore W4385569672C120314980 @default.
- W4385569672 hasConceptScore W4385569672C126255220 @default.
- W4385569672 hasConceptScore W4385569672C130120984 @default.
- W4385569672 hasConceptScore W4385569672C137836250 @default.
- W4385569672 hasConceptScore W4385569672C145062175 @default.
- W4385569672 hasConceptScore W4385569672C157972887 @default.
- W4385569672 hasConceptScore W4385569672C200157131 @default.
- W4385569672 hasConceptScore W4385569672C20729856 @default.
- W4385569672 hasConceptScore W4385569672C2524010 @default.
- W4385569672 hasConceptScore W4385569672C2776257435 @default.
- W4385569672 hasConceptScore W4385569672C31258907 @default.
- W4385569672 hasConceptScore W4385569672C33923547 @default.
- W4385569672 hasConceptScore W4385569672C41008148 @default.
- W4385569672 hasConceptScore W4385569672C554190296 @default.
- W4385569672 hasConceptScore W4385569672C76155785 @default.
- W4385569672 hasFunder F4320338295 @default.
- W4385569672 hasLocation W43855696721 @default.
- W4385569672 hasOpenAccess W4385569672 @default.
- W4385569672 hasPrimaryLocation W43855696721 @default.
- W4385569672 hasRelatedWork W1990230466 @default.
- W4385569672 hasRelatedWork W2058031044 @default.
- W4385569672 hasRelatedWork W2160044169 @default.
- W4385569672 hasRelatedWork W2540326417 @default.
- W4385569672 hasRelatedWork W2740113683 @default.
- W4385569672 hasRelatedWork W2772182023 @default.
- W4385569672 hasRelatedWork W4232672622 @default.
- W4385569672 hasRelatedWork W4251345889 @default.
- W4385569672 hasRelatedWork W4285060366 @default.
- W4385569672 hasRelatedWork W4381745377 @default.
- W4385569672 isParatext "false" @default.
- W4385569672 isRetracted "false" @default.
- W4385569672 workType "article" @default.