Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385574865> ?p ?o ?g. }
- W4385574865 endingPage "2382" @default.
- W4385574865 startingPage "2370" @default.
- W4385574865 abstract "Deep learning has become a key research component of space target detection. To ensure the safety of the aerospace field with the rapid development of hypersonic vehicles, the deep learning method is applied to recognize the flight state and type of hypersonic targets (HTs) for the first time in this article. It makes two main contributions. First, a method for constructing HT datasets based on the space-based low-orbit hyperspectral detector is proposed, which uses the nonequilibrium high-temperature flow field generated during the flight of HTs to calculate the spectral radiation characteristics and simulate the intraclass variation of each subclass of hyperspectral targets in the actual observation scene. Second, an in-depth study on the performance of deep learning methods using the constructed HT dataset is conducted, as well as a comparison with a recognition benchmark using machine learning and deep learning methods is discussed. Finally, we summarize the challenges faced by HT recognition." @default.
- W4385574865 created "2023-08-05" @default.
- W4385574865 creator A5001262817 @default.
- W4385574865 creator A5002359857 @default.
- W4385574865 creator A5042025915 @default.
- W4385574865 creator A5058129327 @default.
- W4385574865 creator A5064042168 @default.
- W4385574865 creator A5075604684 @default.
- W4385574865 date "2023-08-01" @default.
- W4385574865 modified "2023-10-10" @default.
- W4385574865 title "Hypersonic Target Recognition Based on the Space-Based Hyperspectral Detector With Deep Learning" @default.
- W4385574865 cites W1521436688 @default.
- W4385574865 cites W1966580635 @default.
- W4385574865 cites W2001298023 @default.
- W4385574865 cites W2012622138 @default.
- W4385574865 cites W2015030141 @default.
- W4385574865 cites W2019329744 @default.
- W4385574865 cites W2029316659 @default.
- W4385574865 cites W2053786220 @default.
- W4385574865 cites W2108598243 @default.
- W4385574865 cites W2160987257 @default.
- W4385574865 cites W2320354411 @default.
- W4385574865 cites W2899341612 @default.
- W4385574865 cites W2899937451 @default.
- W4385574865 cites W2912504175 @default.
- W4385574865 cites W2950325582 @default.
- W4385574865 cites W2964199361 @default.
- W4385574865 cites W2991616716 @default.
- W4385574865 cites W2998039742 @default.
- W4385574865 cites W3010420609 @default.
- W4385574865 cites W3014772749 @default.
- W4385574865 cites W3019166713 @default.
- W4385574865 cites W3045086295 @default.
- W4385574865 cites W3100320259 @default.
- W4385574865 cites W3126991911 @default.
- W4385574865 cites W3138185847 @default.
- W4385574865 cites W3168963360 @default.
- W4385574865 cites W3174549830 @default.
- W4385574865 cites W3179486292 @default.
- W4385574865 cites W3191305630 @default.
- W4385574865 cites W4240485910 @default.
- W4385574865 cites W4282981639 @default.
- W4385574865 cites W4306761794 @default.
- W4385574865 cites W4310663280 @default.
- W4385574865 cites W4310760536 @default.
- W4385574865 doi "https://doi.org/10.1109/tps.2023.3297579" @default.
- W4385574865 hasPublicationYear "2023" @default.
- W4385574865 type Work @default.
- W4385574865 citedByCount "0" @default.
- W4385574865 crossrefType "journal-article" @default.
- W4385574865 hasAuthorship W4385574865A5001262817 @default.
- W4385574865 hasAuthorship W4385574865A5002359857 @default.
- W4385574865 hasAuthorship W4385574865A5042025915 @default.
- W4385574865 hasAuthorship W4385574865A5058129327 @default.
- W4385574865 hasAuthorship W4385574865A5064042168 @default.
- W4385574865 hasAuthorship W4385574865A5075604684 @default.
- W4385574865 hasConcept C108583219 @default.
- W4385574865 hasConcept C119857082 @default.
- W4385574865 hasConcept C121332964 @default.
- W4385574865 hasConcept C122824865 @default.
- W4385574865 hasConcept C127313418 @default.
- W4385574865 hasConcept C127413603 @default.
- W4385574865 hasConcept C13280743 @default.
- W4385574865 hasConcept C146978453 @default.
- W4385574865 hasConcept C153180895 @default.
- W4385574865 hasConcept C154945302 @default.
- W4385574865 hasConcept C159078339 @default.
- W4385574865 hasConcept C167740415 @default.
- W4385574865 hasConcept C168167062 @default.
- W4385574865 hasConcept C185798385 @default.
- W4385574865 hasConcept C202444582 @default.
- W4385574865 hasConcept C29829512 @default.
- W4385574865 hasConcept C33923547 @default.
- W4385574865 hasConcept C41008148 @default.
- W4385574865 hasConcept C76155785 @default.
- W4385574865 hasConcept C94915269 @default.
- W4385574865 hasConcept C9652623 @default.
- W4385574865 hasConcept C97355855 @default.
- W4385574865 hasConceptScore W4385574865C108583219 @default.
- W4385574865 hasConceptScore W4385574865C119857082 @default.
- W4385574865 hasConceptScore W4385574865C121332964 @default.
- W4385574865 hasConceptScore W4385574865C122824865 @default.
- W4385574865 hasConceptScore W4385574865C127313418 @default.
- W4385574865 hasConceptScore W4385574865C127413603 @default.
- W4385574865 hasConceptScore W4385574865C13280743 @default.
- W4385574865 hasConceptScore W4385574865C146978453 @default.
- W4385574865 hasConceptScore W4385574865C153180895 @default.
- W4385574865 hasConceptScore W4385574865C154945302 @default.
- W4385574865 hasConceptScore W4385574865C159078339 @default.
- W4385574865 hasConceptScore W4385574865C167740415 @default.
- W4385574865 hasConceptScore W4385574865C168167062 @default.
- W4385574865 hasConceptScore W4385574865C185798385 @default.
- W4385574865 hasConceptScore W4385574865C202444582 @default.
- W4385574865 hasConceptScore W4385574865C29829512 @default.
- W4385574865 hasConceptScore W4385574865C33923547 @default.
- W4385574865 hasConceptScore W4385574865C41008148 @default.
- W4385574865 hasConceptScore W4385574865C76155785 @default.
- W4385574865 hasConceptScore W4385574865C94915269 @default.