Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385575215> ?p ?o ?g. }
- W4385575215 abstract "Abstract Background Various predictive models have been developed for predicting the incidence of coronary heart disease (CHD), but none of them has had optimal predictive value. Although these models consider diabetes as an important CHD risk factor, they do not consider insulin resistance or triglyceride (TG). The unsatisfactory performance of these prediction models may be attributed to the ignoring of these factors despite their proven effects on CHD. We decided to modify standard CHD predictive models through machine learning to determine whether the triglyceride-glucose index (TyG-index, a logarithmized combination of fasting blood sugar (FBS) and TG that demonstrates insulin resistance) functions better than diabetes as a CHD predictor. Methods Two-thousand participants of a community-based Iranian population, aged 20–74 years, were investigated with a mean follow-up of 9.9 years (range: 7.6–12.2). The association between the TyG-index and CHD was investigated using multivariate Cox proportional hazard models. By selecting common components of previously validated CHD risk scores, we developed machine learning models for predicting CHD. The TyG-index was substituted for diabetes in CHD prediction models. All components of machine learning models were explained in terms of how they affect CHD prediction. CHD-predicting TyG-index cut-off points were calculated. Results The incidence of CHD was 14.5%. Compared to the lowest quartile of the TyG-index, the fourth quartile had a fully adjusted hazard ratio of 2.32 (confidence interval [CI] 1.16–4.68, p-trend 0.04). A TyG-index > 8.42 had the highest negative predictive value for CHD. The TyG-index-based support vector machine (SVM) performed significantly better than diabetes-based SVM for predicting CHD. The TyG-index was not only more important than diabetes in predicting CHD; it was the most important factor after age in machine learning models. Conclusion We recommend using the TyG-index in clinical practice and predictive models to identify individuals at risk of developing CHD and to aid in its prevention ." @default.
- W4385575215 created "2023-08-05" @default.
- W4385575215 creator A5005703821 @default.
- W4385575215 creator A5019766706 @default.
- W4385575215 creator A5042907308 @default.
- W4385575215 creator A5061349365 @default.
- W4385575215 creator A5075356033 @default.
- W4385575215 creator A5092596681 @default.
- W4385575215 date "2023-08-04" @default.
- W4385575215 modified "2023-10-15" @default.
- W4385575215 title "An innovative model for predicting coronary heart disease using triglyceride-glucose index: a machine learning-based cohort study" @default.
- W4385575215 cites W1809577636 @default.
- W4385575215 cites W2022893244 @default.
- W4385575215 cites W2039758398 @default.
- W4385575215 cites W2055838663 @default.
- W4385575215 cites W2096807144 @default.
- W4385575215 cites W2106665921 @default.
- W4385575215 cites W2107165713 @default.
- W4385575215 cites W2107191533 @default.
- W4385575215 cites W2115830594 @default.
- W4385575215 cites W2145044750 @default.
- W4385575215 cites W2152316341 @default.
- W4385575215 cites W2168536722 @default.
- W4385575215 cites W2170652936 @default.
- W4385575215 cites W2217853646 @default.
- W4385575215 cites W2328176404 @default.
- W4385575215 cites W2551615700 @default.
- W4385575215 cites W2605253636 @default.
- W4385575215 cites W2800788706 @default.
- W4385575215 cites W2804957584 @default.
- W4385575215 cites W2811157820 @default.
- W4385575215 cites W2900621847 @default.
- W4385575215 cites W2917110324 @default.
- W4385575215 cites W2917128688 @default.
- W4385575215 cites W2917667939 @default.
- W4385575215 cites W2945164732 @default.
- W4385575215 cites W2966671057 @default.
- W4385575215 cites W2972750514 @default.
- W4385575215 cites W3001764054 @default.
- W4385575215 cites W3025010103 @default.
- W4385575215 cites W3037355337 @default.
- W4385575215 cites W3089401561 @default.
- W4385575215 cites W3096943439 @default.
- W4385575215 cites W3111831855 @default.
- W4385575215 cites W3118935644 @default.
- W4385575215 cites W3122226502 @default.
- W4385575215 cites W3133957980 @default.
- W4385575215 cites W3147389358 @default.
- W4385575215 cites W3165407404 @default.
- W4385575215 cites W3180177952 @default.
- W4385575215 cites W3205704869 @default.
- W4385575215 cites W3212362970 @default.
- W4385575215 cites W4200607853 @default.
- W4385575215 cites W4220757809 @default.
- W4385575215 cites W4224943390 @default.
- W4385575215 cites W4228997710 @default.
- W4385575215 cites W4232807629 @default.
- W4385575215 cites W4281675919 @default.
- W4385575215 cites W4282918126 @default.
- W4385575215 cites W4283753490 @default.
- W4385575215 cites W4283828205 @default.
- W4385575215 cites W4286005581 @default.
- W4385575215 cites W4288423800 @default.
- W4385575215 cites W4292847061 @default.
- W4385575215 cites W4295136155 @default.
- W4385575215 cites W4295757225 @default.
- W4385575215 cites W4295997707 @default.
- W4385575215 cites W4296802076 @default.
- W4385575215 cites W4297238324 @default.
- W4385575215 cites W4300960117 @default.
- W4385575215 cites W4306722552 @default.
- W4385575215 cites W4317538583 @default.
- W4385575215 cites W4366086722 @default.
- W4385575215 doi "https://doi.org/10.1186/s12933-023-01939-9" @default.
- W4385575215 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37542255" @default.
- W4385575215 hasPublicationYear "2023" @default.
- W4385575215 type Work @default.
- W4385575215 citedByCount "0" @default.
- W4385575215 crossrefType "journal-article" @default.
- W4385575215 hasAuthorship W4385575215A5005703821 @default.
- W4385575215 hasAuthorship W4385575215A5019766706 @default.
- W4385575215 hasAuthorship W4385575215A5042907308 @default.
- W4385575215 hasAuthorship W4385575215A5061349365 @default.
- W4385575215 hasAuthorship W4385575215A5075356033 @default.
- W4385575215 hasAuthorship W4385575215A5092596681 @default.
- W4385575215 hasBestOaLocation W43855752151 @default.
- W4385575215 hasConcept C11783203 @default.
- W4385575215 hasConcept C126322002 @default.
- W4385575215 hasConcept C134018914 @default.
- W4385575215 hasConcept C136764020 @default.
- W4385575215 hasConcept C207103383 @default.
- W4385575215 hasConcept C2777382242 @default.
- W4385575215 hasConcept C2778163477 @default.
- W4385575215 hasConcept C2778913445 @default.
- W4385575215 hasConcept C2779134260 @default.
- W4385575215 hasConcept C2908647359 @default.
- W4385575215 hasConcept C41008148 @default.
- W4385575215 hasConcept C44249647 @default.
- W4385575215 hasConcept C50382708 @default.
- W4385575215 hasConcept C555293320 @default.