Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385576275> ?p ?o ?g. }
- W4385576275 endingPage "16" @default.
- W4385576275 startingPage "1" @default.
- W4385576275 abstract "Within the new era of artificial intelligence (AI), education industry should develop in the direction of intelligence and digitalization. For evaluating learners’ academic performances, English high-stakes test is not only a mere means for measuring what English as a Foreign Language (EFL) stakeholders know or do not know but also likely to bring life-changing consequences. Hence, effective test preparation for English high-stakes test is crucial for those who futures depend on attaining a particular score. However, traditional corpus-based approaches cannot simultaneously take words’ frequency and range variables into consideration when evaluating their importance level, which makes the word sorting results inaccurate. Thus, to effectively and accurately extract critical words among English high-stakes test for enhancing EFL stakeholders’ test performance, this paper integrates a corpus-based approach and a revised Importance-Performance Analysis (IPA) method to develop a novel frequency-range analysis (FRA) method. Taiwan College Entrance Exam of English Subject (TCEEES) from the year of 2001 to 2022 are adopted as an empirical case of English high stake test and the target corpus for verification. Results indicate that the critical words evaluated by FRA method are concentrated on Quadrant I including 1,576 word types that account for over 60% running words of TCEEES corpus. After compared with the three traditional corpus-based approaches and the Term Frequency-Inverse Document Frequency (TF-IDF) method, the significant contributions include: (1) the FRA method can use a machine-based function words elimination technique to enhance the efficiency; (2) the FRA method can simultaneously take words’ frequency and range variables into consideration; (3) the FRA method can effectively conduct cluster analysis by categorizing the words into the four quadrants that based on their relative importance level. The results will give EFL stakeholders a clearer picture of how to allocate their learning time and education resources into critical words acquisition." @default.
- W4385576275 created "2023-08-05" @default.
- W4385576275 creator A5026157791 @default.
- W4385576275 creator A5055064817 @default.
- W4385576275 date "2023-08-04" @default.
- W4385576275 modified "2023-09-27" @default.
- W4385576275 title "A novel frequency-range analysis (FRA) method for determining critical words among English high-stakes tests" @default.
- W4385576275 cites W2003689301 @default.
- W4385576275 cites W2020716006 @default.
- W4385576275 cites W2062228572 @default.
- W4385576275 cites W2109160152 @default.
- W4385576275 cites W2114282361 @default.
- W4385576275 cites W2145713659 @default.
- W4385576275 cites W2338175764 @default.
- W4385576275 cites W2518847180 @default.
- W4385576275 cites W2519317669 @default.
- W4385576275 cites W2888469435 @default.
- W4385576275 cites W2893929634 @default.
- W4385576275 cites W2949710170 @default.
- W4385576275 cites W2969029533 @default.
- W4385576275 cites W2984087921 @default.
- W4385576275 cites W2995510651 @default.
- W4385576275 cites W3005381724 @default.
- W4385576275 cites W3005988395 @default.
- W4385576275 cites W3006707474 @default.
- W4385576275 cites W3010968230 @default.
- W4385576275 cites W3016668192 @default.
- W4385576275 cites W3017010203 @default.
- W4385576275 cites W3021219034 @default.
- W4385576275 cites W3041691138 @default.
- W4385576275 cites W3043894456 @default.
- W4385576275 cites W3048512477 @default.
- W4385576275 cites W3082036266 @default.
- W4385576275 cites W3082781751 @default.
- W4385576275 cites W3084347694 @default.
- W4385576275 cites W3084662227 @default.
- W4385576275 cites W3097691247 @default.
- W4385576275 cites W3105088965 @default.
- W4385576275 cites W3118242302 @default.
- W4385576275 cites W3135501921 @default.
- W4385576275 cites W3158018916 @default.
- W4385576275 cites W3162190334 @default.
- W4385576275 cites W3192273689 @default.
- W4385576275 cites W3193280823 @default.
- W4385576275 cites W3200440501 @default.
- W4385576275 cites W3206160154 @default.
- W4385576275 cites W3207568376 @default.
- W4385576275 cites W3209503461 @default.
- W4385576275 cites W4205528052 @default.
- W4385576275 cites W4225947021 @default.
- W4385576275 cites W4229070788 @default.
- W4385576275 cites W4229974297 @default.
- W4385576275 cites W4283387990 @default.
- W4385576275 cites W4293093200 @default.
- W4385576275 cites W3198888163 @default.
- W4385576275 doi "https://doi.org/10.3233/jifs-231539" @default.
- W4385576275 hasPublicationYear "2023" @default.
- W4385576275 type Work @default.
- W4385576275 citedByCount "0" @default.
- W4385576275 crossrefType "journal-article" @default.
- W4385576275 hasAuthorship W4385576275A5026157791 @default.
- W4385576275 hasAuthorship W4385576275A5055064817 @default.
- W4385576275 hasConcept C106159729 @default.
- W4385576275 hasConcept C106306483 @default.
- W4385576275 hasConcept C127413603 @default.
- W4385576275 hasConcept C14036430 @default.
- W4385576275 hasConcept C146978453 @default.
- W4385576275 hasConcept C151730666 @default.
- W4385576275 hasConcept C154945302 @default.
- W4385576275 hasConcept C162324750 @default.
- W4385576275 hasConcept C204321447 @default.
- W4385576275 hasConcept C204323151 @default.
- W4385576275 hasConcept C2777267654 @default.
- W4385576275 hasConcept C41008148 @default.
- W4385576275 hasConcept C78458016 @default.
- W4385576275 hasConcept C86803240 @default.
- W4385576275 hasConceptScore W4385576275C106159729 @default.
- W4385576275 hasConceptScore W4385576275C106306483 @default.
- W4385576275 hasConceptScore W4385576275C127413603 @default.
- W4385576275 hasConceptScore W4385576275C14036430 @default.
- W4385576275 hasConceptScore W4385576275C146978453 @default.
- W4385576275 hasConceptScore W4385576275C151730666 @default.
- W4385576275 hasConceptScore W4385576275C154945302 @default.
- W4385576275 hasConceptScore W4385576275C162324750 @default.
- W4385576275 hasConceptScore W4385576275C204321447 @default.
- W4385576275 hasConceptScore W4385576275C204323151 @default.
- W4385576275 hasConceptScore W4385576275C2777267654 @default.
- W4385576275 hasConceptScore W4385576275C41008148 @default.
- W4385576275 hasConceptScore W4385576275C78458016 @default.
- W4385576275 hasConceptScore W4385576275C86803240 @default.
- W4385576275 hasLocation W43855762751 @default.
- W4385576275 hasOpenAccess W4385576275 @default.
- W4385576275 hasPrimaryLocation W43855762751 @default.
- W4385576275 hasRelatedWork W1512718085 @default.
- W4385576275 hasRelatedWork W1569841287 @default.
- W4385576275 hasRelatedWork W2293457016 @default.
- W4385576275 hasRelatedWork W2351428524 @default.
- W4385576275 hasRelatedWork W2359001871 @default.