Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385577592> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4385577592 abstract "The cost of preventative measures is often lower than that of medical care in most nations. Early diagnosis of disease yields better treatment outcomes than late diagnosis. Unless we have a better idea of how to treat people, whatever help we can provide them would be appreciated. Among these illnesses is cervical cancer, which ranks number four on the list of the most prevalent cancers in women worldwide. Age and the usage of hormonal contraceptives are only two of the numerous variables that raise the risk of cervical cancer. Increased survival and lower mortality rates are the result of cervical cancer screenings that discover the disease at an early stage. The goal of this work is to apply machine learning methods to identify a model that can detect cervical cancer with high specificity and accuracy. Predictions of cervical cancer are made using a CNN model in this study. The Kaggle dataset of risk factors for cervical cancer, including 32 risk factors and 4 goal variables. Lastly, we compared our findings to those of other research and discovered that, based on various assessment metrics, our models performed better than those of the other studies in diagnosing cervical cancer." @default.
- W4385577592 created "2023-08-05" @default.
- W4385577592 creator A5018116033 @default.
- W4385577592 creator A5068774476 @default.
- W4385577592 date "2023-05-25" @default.
- W4385577592 modified "2023-09-26" @default.
- W4385577592 title "An Automated Identification of Cervical Cancer disease using Convolutional Neural Network Model" @default.
- W4385577592 cites W2601837479 @default.
- W4385577592 cites W3018145584 @default.
- W4385577592 cites W3085862547 @default.
- W4385577592 cites W3134810602 @default.
- W4385577592 cites W3176488901 @default.
- W4385577592 cites W3181520718 @default.
- W4385577592 cites W3201987244 @default.
- W4385577592 cites W4205786720 @default.
- W4385577592 cites W4206957834 @default.
- W4385577592 cites W4224267285 @default.
- W4385577592 cites W4282974434 @default.
- W4385577592 cites W4292055459 @default.
- W4385577592 cites W4285092662 @default.
- W4385577592 doi "https://doi.org/10.1109/accai58221.2023.10200640" @default.
- W4385577592 hasPublicationYear "2023" @default.
- W4385577592 type Work @default.
- W4385577592 citedByCount "0" @default.
- W4385577592 crossrefType "proceedings-article" @default.
- W4385577592 hasAuthorship W4385577592A5018116033 @default.
- W4385577592 hasAuthorship W4385577592A5068774476 @default.
- W4385577592 hasConcept C116834253 @default.
- W4385577592 hasConcept C119857082 @default.
- W4385577592 hasConcept C121608353 @default.
- W4385577592 hasConcept C126322002 @default.
- W4385577592 hasConcept C146357865 @default.
- W4385577592 hasConcept C151730666 @default.
- W4385577592 hasConcept C177713679 @default.
- W4385577592 hasConcept C2778220009 @default.
- W4385577592 hasConcept C2779134260 @default.
- W4385577592 hasConcept C29456083 @default.
- W4385577592 hasConcept C41008148 @default.
- W4385577592 hasConcept C59822182 @default.
- W4385577592 hasConcept C71924100 @default.
- W4385577592 hasConcept C81363708 @default.
- W4385577592 hasConcept C86803240 @default.
- W4385577592 hasConceptScore W4385577592C116834253 @default.
- W4385577592 hasConceptScore W4385577592C119857082 @default.
- W4385577592 hasConceptScore W4385577592C121608353 @default.
- W4385577592 hasConceptScore W4385577592C126322002 @default.
- W4385577592 hasConceptScore W4385577592C146357865 @default.
- W4385577592 hasConceptScore W4385577592C151730666 @default.
- W4385577592 hasConceptScore W4385577592C177713679 @default.
- W4385577592 hasConceptScore W4385577592C2778220009 @default.
- W4385577592 hasConceptScore W4385577592C2779134260 @default.
- W4385577592 hasConceptScore W4385577592C29456083 @default.
- W4385577592 hasConceptScore W4385577592C41008148 @default.
- W4385577592 hasConceptScore W4385577592C59822182 @default.
- W4385577592 hasConceptScore W4385577592C71924100 @default.
- W4385577592 hasConceptScore W4385577592C81363708 @default.
- W4385577592 hasConceptScore W4385577592C86803240 @default.
- W4385577592 hasLocation W43855775921 @default.
- W4385577592 hasOpenAccess W4385577592 @default.
- W4385577592 hasPrimaryLocation W43855775921 @default.
- W4385577592 hasRelatedWork W2081064592 @default.
- W4385577592 hasRelatedWork W2356105190 @default.
- W4385577592 hasRelatedWork W2384708512 @default.
- W4385577592 hasRelatedWork W2521062615 @default.
- W4385577592 hasRelatedWork W2735477435 @default.
- W4385577592 hasRelatedWork W2748952813 @default.
- W4385577592 hasRelatedWork W2899084033 @default.
- W4385577592 hasRelatedWork W3016958897 @default.
- W4385577592 hasRelatedWork W3181746755 @default.
- W4385577592 hasRelatedWork W4283379348 @default.
- W4385577592 isParatext "false" @default.
- W4385577592 isRetracted "false" @default.
- W4385577592 workType "article" @default.