Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385577785> ?p ?o ?g. }
- W4385577785 endingPage "125111" @default.
- W4385577785 startingPage "125111" @default.
- W4385577785 abstract "Abstract Intelligent fault diagnosis of rotating equipment is increasingly reliant on algorithms that are driven by big data. By contrast, signal processing was once widely utilized for fault diagnosis in machinery as a classical tool for signal analysis due to its capability to investigate the fault-related mechanism and almost no demand on the number of data samples. This investigation was motivated by the notion that signal processing and data-driven algorithms are combined to exploit their respective characteristics and strengths. Furthermore, in engineering practice, numerous complex factors such as time-variable operating conditions of equipment, non-stationary properties of signals, and extremely limited samples available for model training, can make it difficult to learn discriminative features from input data, thereby diminishing the diagnostic accuracy. In this paper, a novel framework of vibration amplitude normalization (VAN) enhanced fault diagnosis is proposed. Firstly, after dissects deeply the effects of the time-varying speed conditions on vibration signal and its characteristics, VAN technique is proposed for non-stationary signal processing to obtain the approximate stationary signal, so as to facilitate the subsequent state characteristics mining from the vibration signal. Then, two VAN enhanced fault diagnosis methods—i.e. signal amplitude normalization integrated with shallow learning by cascade and VAN integrated with deep learning by embedding—are developed to capture discriminative features from approximate stationary signal for fault diagnosis under conditions of variable speed and extremely limited samples. Finally, the feasibility and effectiveness of the proposed methods are verified using actual vibration datasets measured on test rig and in-site wind turbines. The number of samples required to achieve the same diagnostic accuracy is reduced by an average of 60%, demonstrating the superiority." @default.
- W4385577785 created "2023-08-05" @default.
- W4385577785 creator A5017792123 @default.
- W4385577785 creator A5019169850 @default.
- W4385577785 creator A5037666923 @default.
- W4385577785 creator A5089139551 @default.
- W4385577785 date "2023-08-25" @default.
- W4385577785 modified "2023-09-30" @default.
- W4385577785 title "Vibration amplitude normalization enhanced fault diagnosis under conditions of variable speed and extremely limited samples" @default.
- W4385577785 cites W2024156772 @default.
- W4385577785 cites W2236256746 @default.
- W4385577785 cites W2463092940 @default.
- W4385577785 cites W2734897736 @default.
- W4385577785 cites W2767230764 @default.
- W4385577785 cites W2779615422 @default.
- W4385577785 cites W2888337213 @default.
- W4385577785 cites W2898375427 @default.
- W4385577785 cites W2914345141 @default.
- W4385577785 cites W2941870486 @default.
- W4385577785 cites W2966008650 @default.
- W4385577785 cites W2969817423 @default.
- W4385577785 cites W2986268941 @default.
- W4385577785 cites W2996117967 @default.
- W4385577785 cites W3011262627 @default.
- W4385577785 cites W3021261417 @default.
- W4385577785 cites W3044212318 @default.
- W4385577785 cites W3045546070 @default.
- W4385577785 cites W3174788865 @default.
- W4385577785 cites W3212779708 @default.
- W4385577785 cites W4200053442 @default.
- W4385577785 cites W4200534047 @default.
- W4385577785 cites W4210985339 @default.
- W4385577785 cites W4211058054 @default.
- W4385577785 cites W4213238202 @default.
- W4385577785 cites W4221094970 @default.
- W4385577785 cites W4229067696 @default.
- W4385577785 cites W4280552892 @default.
- W4385577785 cites W4285064815 @default.
- W4385577785 cites W4287844218 @default.
- W4385577785 cites W4297338260 @default.
- W4385577785 cites W4297509495 @default.
- W4385577785 cites W4306249950 @default.
- W4385577785 cites W4313397337 @default.
- W4385577785 cites W4313406541 @default.
- W4385577785 cites W4313644313 @default.
- W4385577785 cites W4318677150 @default.
- W4385577785 doi "https://doi.org/10.1088/1361-6501/aced4e" @default.
- W4385577785 hasPublicationYear "2023" @default.
- W4385577785 type Work @default.
- W4385577785 citedByCount "0" @default.
- W4385577785 crossrefType "journal-article" @default.
- W4385577785 hasAuthorship W4385577785A5017792123 @default.
- W4385577785 hasAuthorship W4385577785A5019169850 @default.
- W4385577785 hasAuthorship W4385577785A5037666923 @default.
- W4385577785 hasAuthorship W4385577785A5089139551 @default.
- W4385577785 hasConcept C104267543 @default.
- W4385577785 hasConcept C11413529 @default.
- W4385577785 hasConcept C121332964 @default.
- W4385577785 hasConcept C127313418 @default.
- W4385577785 hasConcept C136886441 @default.
- W4385577785 hasConcept C144024400 @default.
- W4385577785 hasConcept C152745839 @default.
- W4385577785 hasConcept C153180895 @default.
- W4385577785 hasConcept C154945302 @default.
- W4385577785 hasConcept C165205528 @default.
- W4385577785 hasConcept C172707124 @default.
- W4385577785 hasConcept C175551986 @default.
- W4385577785 hasConcept C180205008 @default.
- W4385577785 hasConcept C19165224 @default.
- W4385577785 hasConcept C198394728 @default.
- W4385577785 hasConcept C199360897 @default.
- W4385577785 hasConcept C24890656 @default.
- W4385577785 hasConcept C2775924081 @default.
- W4385577785 hasConcept C2779843651 @default.
- W4385577785 hasConcept C41008148 @default.
- W4385577785 hasConcept C41608201 @default.
- W4385577785 hasConcept C47446073 @default.
- W4385577785 hasConcept C62520636 @default.
- W4385577785 hasConcept C84462506 @default.
- W4385577785 hasConcept C9390403 @default.
- W4385577785 hasConcept C97931131 @default.
- W4385577785 hasConceptScore W4385577785C104267543 @default.
- W4385577785 hasConceptScore W4385577785C11413529 @default.
- W4385577785 hasConceptScore W4385577785C121332964 @default.
- W4385577785 hasConceptScore W4385577785C127313418 @default.
- W4385577785 hasConceptScore W4385577785C136886441 @default.
- W4385577785 hasConceptScore W4385577785C144024400 @default.
- W4385577785 hasConceptScore W4385577785C152745839 @default.
- W4385577785 hasConceptScore W4385577785C153180895 @default.
- W4385577785 hasConceptScore W4385577785C154945302 @default.
- W4385577785 hasConceptScore W4385577785C165205528 @default.
- W4385577785 hasConceptScore W4385577785C172707124 @default.
- W4385577785 hasConceptScore W4385577785C175551986 @default.
- W4385577785 hasConceptScore W4385577785C180205008 @default.
- W4385577785 hasConceptScore W4385577785C19165224 @default.
- W4385577785 hasConceptScore W4385577785C198394728 @default.
- W4385577785 hasConceptScore W4385577785C199360897 @default.
- W4385577785 hasConceptScore W4385577785C24890656 @default.