Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385580183> ?p ?o ?g. }
- W4385580183 endingPage "4774" @default.
- W4385580183 startingPage "4753" @default.
- W4385580183 abstract "ABSTRACTAccurately predicting heavy metal concentration in soils is essential for agricultural production and food safety. The hyperspectral technique provides a feasible method for rapidly determining heavy metal concentration. In this study, we use spectral and Box-Cox transformations to pre-process the spectral and soil Zn concentration data to solve the problem of low prediction accuracy caused by the non-normal distribution of soil Zn concentration and the unobvious spectral characteristics. The characteristic wavelengths were selected using competitive adaptive reweighted sampling (CARS) and Boruta algorithms. Back propagation neural network (BPNN) was used to predict the low Zn concentration in the soil. The results showed that the accuracy of the models was mostly improved after Box-Cox transformation for low Zn concentration; both continuous wavelet transform (CWT) and fractional order differential (FOD) could explore the delicate features of the spectra to different degrees; the Boruta algorithm could select the wavelengths that were more relevant to Zn; the best performance could be obtained by combining CWT and Boruta algorithms, where the L5-Boruta model had the highest prediction accuracy with R2, RMSE and RPIQ of 0.656, 13.050 mg∙kg−1 and 2.351, respectively.KEYWORDS: EntisolsferralsolsAlfisolshyperspectralzincspectral transformationcharacteristic wavelength selection Disclosure statementNo potential conflict of interest was reported by the authors.Author contributionsHailong Zhao, Shu Gan, Xiping Yuan: Conceptualization, Methodology; Hailong Zhao: Software, Validation, Visualization, Writing – original draft; Hailong Zhao, Shu Gan, Lin Hu: Writing – review & editing; Hailong Zhao, Junjie Wang, Shuai Liu: Investigation, Resources; Shu Gan, Xiping Yuan: Supervision, Funding acquisition.Additional informationFundingThis work was supported by the [National Natural Science Foundation of China] under Grant [number 62266026] and supported by analysis and testing foundation of Kunming University of Science and Technology." @default.
- W4385580183 created "2023-08-05" @default.
- W4385580183 creator A5002076661 @default.
- W4385580183 creator A5016507870 @default.
- W4385580183 creator A5019061471 @default.
- W4385580183 creator A5048989648 @default.
- W4385580183 creator A5050554317 @default.
- W4385580183 creator A5080338812 @default.
- W4385580183 date "2023-08-03" @default.
- W4385580183 modified "2023-09-27" @default.
- W4385580183 title "Prediction of low Zn concentrations in soil from mountainous areas of central Yunnan Province using a combination of continuous wavelet transform and Boruta algorithm" @default.
- W4385580183 cites W1982755765 @default.
- W4385580183 cites W1985931804 @default.
- W4385580183 cites W1993355562 @default.
- W4385580183 cites W1995170398 @default.
- W4385580183 cites W1997270149 @default.
- W4385580183 cites W2025857348 @default.
- W4385580183 cites W2036737027 @default.
- W4385580183 cites W2048401133 @default.
- W4385580183 cites W2051169959 @default.
- W4385580183 cites W2113085009 @default.
- W4385580183 cites W2136235890 @default.
- W4385580183 cites W2156665896 @default.
- W4385580183 cites W2322799392 @default.
- W4385580183 cites W2563958088 @default.
- W4385580183 cites W2791426239 @default.
- W4385580183 cites W2890296937 @default.
- W4385580183 cites W2890761376 @default.
- W4385580183 cites W2894980471 @default.
- W4385580183 cites W2898361048 @default.
- W4385580183 cites W2901164490 @default.
- W4385580183 cites W2904796016 @default.
- W4385580183 cites W2917751567 @default.
- W4385580183 cites W2920846280 @default.
- W4385580183 cites W2945743487 @default.
- W4385580183 cites W2949225437 @default.
- W4385580183 cites W2980570323 @default.
- W4385580183 cites W3011780324 @default.
- W4385580183 cites W3080532439 @default.
- W4385580183 cites W3084075965 @default.
- W4385580183 cites W3106889193 @default.
- W4385580183 cites W3133977987 @default.
- W4385580183 cites W3174187404 @default.
- W4385580183 cites W3176270994 @default.
- W4385580183 cites W3178082571 @default.
- W4385580183 cites W3200633933 @default.
- W4385580183 cites W3203909734 @default.
- W4385580183 cites W3207691342 @default.
- W4385580183 cites W4210276049 @default.
- W4385580183 cites W4211250212 @default.
- W4385580183 cites W4220816818 @default.
- W4385580183 cites W4221119424 @default.
- W4385580183 cites W4282824936 @default.
- W4385580183 cites W4283025880 @default.
- W4385580183 cites W4290465954 @default.
- W4385580183 cites W4292745372 @default.
- W4385580183 doi "https://doi.org/10.1080/01431161.2023.2237664" @default.
- W4385580183 hasPublicationYear "2023" @default.
- W4385580183 type Work @default.
- W4385580183 citedByCount "0" @default.
- W4385580183 crossrefType "journal-article" @default.
- W4385580183 hasAuthorship W4385580183A5002076661 @default.
- W4385580183 hasAuthorship W4385580183A5016507870 @default.
- W4385580183 hasAuthorship W4385580183A5019061471 @default.
- W4385580183 hasAuthorship W4385580183A5048989648 @default.
- W4385580183 hasAuthorship W4385580183A5050554317 @default.
- W4385580183 hasAuthorship W4385580183A5080338812 @default.
- W4385580183 hasConcept C104317684 @default.
- W4385580183 hasConcept C11413529 @default.
- W4385580183 hasConcept C124101348 @default.
- W4385580183 hasConcept C153180895 @default.
- W4385580183 hasConcept C154945302 @default.
- W4385580183 hasConcept C159078339 @default.
- W4385580183 hasConcept C185592680 @default.
- W4385580183 hasConcept C204241405 @default.
- W4385580183 hasConcept C41008148 @default.
- W4385580183 hasConcept C47432892 @default.
- W4385580183 hasConcept C55493867 @default.
- W4385580183 hasConceptScore W4385580183C104317684 @default.
- W4385580183 hasConceptScore W4385580183C11413529 @default.
- W4385580183 hasConceptScore W4385580183C124101348 @default.
- W4385580183 hasConceptScore W4385580183C153180895 @default.
- W4385580183 hasConceptScore W4385580183C154945302 @default.
- W4385580183 hasConceptScore W4385580183C159078339 @default.
- W4385580183 hasConceptScore W4385580183C185592680 @default.
- W4385580183 hasConceptScore W4385580183C204241405 @default.
- W4385580183 hasConceptScore W4385580183C41008148 @default.
- W4385580183 hasConceptScore W4385580183C47432892 @default.
- W4385580183 hasConceptScore W4385580183C55493867 @default.
- W4385580183 hasFunder F4320321001 @default.
- W4385580183 hasFunder F4320334991 @default.
- W4385580183 hasIssue "15" @default.
- W4385580183 hasLocation W43855801831 @default.
- W4385580183 hasOpenAccess W4385580183 @default.
- W4385580183 hasPrimaryLocation W43855801831 @default.
- W4385580183 hasRelatedWork W2028628118 @default.
- W4385580183 hasRelatedWork W2030270830 @default.
- W4385580183 hasRelatedWork W2097889461 @default.