Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385582012> ?p ?o ?g. }
- W4385582012 endingPage "4703" @default.
- W4385582012 startingPage "4684" @default.
- W4385582012 abstract "ABSTRACTRemote sensing technology has many advantages in real-time estimating of crop growth. Crop growing estimation primarily establishes the direct statistical model between spectral data and crop biophysical variables. However, the model accuracy rarely improves with the increase in the number of independent variables owing to the multicollinearity; hence, the addition of a data set different from spectral variables may solve this problem. Considering the strong correlation between crop growth and soil environment, this study aims to investigate whether and how the addition of important soil variables can improve estimation model accuracy. This study collected LAI and Chlorophyll substitution index (SPAD value) of wheat canopy and canopy spectral data under different soil environments to quantify the correspondent relationship. Important spectral parameters (IPs) and important soil variables (ISVs) were selected by least absolute shrinkage and selection operator (LASSO) to establish linear and nonlinear models for wheat growth estimation and the effect of multiple soil variables in enhancing wheat growth estimation was tested. The results indicated LASSO can effectively reduce feature dimensionality for wheat growth estimation with maintaining model accuracy; the extra ISVs can improve the model accuracy due to the high collinearity of spectral parameters. The optimal models of wheat LAI estimation (R2 = 0.83, RMSE = 0.500) and SPAD estimation (R2 = 0.75, RMSE = 1.835) were constructed based on orthogonal partial least squares analysis (OPLS) by IPs and IPs+ISVs, respectively. Finally, we discussed the applicability of spectral parameters and soil variables. This research combines remote sensing features of crops with crucial growth variables to obtain an efficient and mechanical crop growth estimation.KEYWORDS: Hyperspectral remote sensingwheat growthleaf area indexSPADsoil environmentmodelling 3. HighlightsTo select the important variables from the independent variables with multicollinearity to simplify the model through LASSOTo estimate wheat growth based on hyperspectral data combined with soil variablesTo evaluate the model’s accuracy, stability and simplicity, and determine the optimal estimation of the wheat growth.AcknowledgementsWe thank the staff of ecological park for their efforts on experimental site. We are grateful to the academic editors and anonymous reviewers for their valuable opinions and comments.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by Jiangsu Province University Innovation Team Project [NO. (2019)1468]. This research was also funded by the Postgraduate Research & Practice Innovation Program of Jiangsu Province [NO. KYCX22_2589], and the Graduate Innovation Program of China University of Mining and Technology [NO.2022WLKXJ106]." @default.
- W4385582012 created "2023-08-05" @default.
- W4385582012 creator A5031108954 @default.
- W4385582012 creator A5035584585 @default.
- W4385582012 creator A5043019475 @default.
- W4385582012 creator A5061972842 @default.
- W4385582012 creator A5066054326 @default.
- W4385582012 date "2023-08-03" @default.
- W4385582012 modified "2023-09-27" @default.
- W4385582012 title "Estimating canopy parameters of winter wheat at different stages using hyperspectral data combined with soil variables" @default.
- W4385582012 cites W1578144663 @default.
- W4385582012 cites W1826962995 @default.
- W4385582012 cites W1885752499 @default.
- W4385582012 cites W1964217023 @default.
- W4385582012 cites W1971259144 @default.
- W4385582012 cites W1997337571 @default.
- W4385582012 cites W1998041414 @default.
- W4385582012 cites W2000613913 @default.
- W4385582012 cites W2010355449 @default.
- W4385582012 cites W2011475440 @default.
- W4385582012 cites W2012086085 @default.
- W4385582012 cites W2019305916 @default.
- W4385582012 cites W2020081448 @default.
- W4385582012 cites W2030233869 @default.
- W4385582012 cites W2046292468 @default.
- W4385582012 cites W2056352756 @default.
- W4385582012 cites W2072254696 @default.
- W4385582012 cites W2081734510 @default.
- W4385582012 cites W2082263916 @default.
- W4385582012 cites W2086807261 @default.
- W4385582012 cites W2096542206 @default.
- W4385582012 cites W2108488321 @default.
- W4385582012 cites W2109006150 @default.
- W4385582012 cites W2115555149 @default.
- W4385582012 cites W2125230412 @default.
- W4385582012 cites W2129483042 @default.
- W4385582012 cites W2131126673 @default.
- W4385582012 cites W2135046866 @default.
- W4385582012 cites W2137564764 @default.
- W4385582012 cites W2161815745 @default.
- W4385582012 cites W2167787089 @default.
- W4385582012 cites W2168036630 @default.
- W4385582012 cites W2313063557 @default.
- W4385582012 cites W2531109463 @default.
- W4385582012 cites W2564219696 @default.
- W4385582012 cites W2581308855 @default.
- W4385582012 cites W2901928690 @default.
- W4385582012 cites W2902238357 @default.
- W4385582012 cites W2960863152 @default.
- W4385582012 cites W2965464462 @default.
- W4385582012 cites W2965906999 @default.
- W4385582012 cites W2972361617 @default.
- W4385582012 cites W3005430388 @default.
- W4385582012 cites W3034255665 @default.
- W4385582012 cites W3095721277 @default.
- W4385582012 cites W3132521989 @default.
- W4385582012 cites W3133001403 @default.
- W4385582012 cites W3167673713 @default.
- W4385582012 cites W3194083568 @default.
- W4385582012 cites W4200543067 @default.
- W4385582012 cites W4205647150 @default.
- W4385582012 cites W4206983641 @default.
- W4385582012 cites W4289101227 @default.
- W4385582012 cites W4292432798 @default.
- W4385582012 cites W4307126717 @default.
- W4385582012 cites W4307978816 @default.
- W4385582012 doi "https://doi.org/10.1080/01431161.2023.2235455" @default.
- W4385582012 hasPublicationYear "2023" @default.
- W4385582012 type Work @default.
- W4385582012 citedByCount "0" @default.
- W4385582012 crossrefType "journal-article" @default.
- W4385582012 hasAuthorship W4385582012A5031108954 @default.
- W4385582012 hasAuthorship W4385582012A5035584585 @default.
- W4385582012 hasAuthorship W4385582012A5043019475 @default.
- W4385582012 hasAuthorship W4385582012A5061972842 @default.
- W4385582012 hasAuthorship W4385582012A5066054326 @default.
- W4385582012 hasConcept C101000010 @default.
- W4385582012 hasConcept C105795698 @default.
- W4385582012 hasConcept C106192678 @default.
- W4385582012 hasConcept C127313418 @default.
- W4385582012 hasConcept C136764020 @default.
- W4385582012 hasConcept C139945424 @default.
- W4385582012 hasConcept C159078339 @default.
- W4385582012 hasConcept C159390177 @default.
- W4385582012 hasConcept C18903297 @default.
- W4385582012 hasConcept C189285262 @default.
- W4385582012 hasConcept C22354355 @default.
- W4385582012 hasConcept C33923547 @default.
- W4385582012 hasConcept C37616216 @default.
- W4385582012 hasConcept C39432304 @default.
- W4385582012 hasConcept C41008148 @default.
- W4385582012 hasConcept C48921125 @default.
- W4385582012 hasConcept C62649853 @default.
- W4385582012 hasConcept C86803240 @default.
- W4385582012 hasConceptScore W4385582012C101000010 @default.
- W4385582012 hasConceptScore W4385582012C105795698 @default.
- W4385582012 hasConceptScore W4385582012C106192678 @default.
- W4385582012 hasConceptScore W4385582012C127313418 @default.