Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385582783> ?p ?o ?g. }
- W4385582783 endingPage "106807" @default.
- W4385582783 startingPage "106807" @default.
- W4385582783 abstract "One way to enhance the thermal conduction process in heating systems is to attach substances with high thermal conductivity (TC) to the base fluids. The interesting properties of NF (nanofluids) and the significant capability for growing TC have caused this group of fluids to be of great interest to researchers in recent years. Hence, in this study, the thermal conductivity of WO3-CuO-Ag (35:40:25) /water nanofluid (NF) with affected Artificial Neural Network (ANN) and back-propagation algorithm is investigated and predicted. The objective of this research is to develop a sophisticated data analysis model that can evaluate intricate relationships that impact the thermal conductivity of HNF in terms of temperature and solid volume fraction (SVF). This study is performed at 6 temperatures (T) of 25, 30, 35, 40, 45, and 50 °C and 4 vol fractions (φ) of 1%, 0.2%, 0.3%, and 0.4%. The regression plot for the datasets a remarkable resemblance to unity, indicating a robust correlation between the predicted values from ANN and the actual values. Notably, the predicted values in ANN are indistinguishable from 0.998, indicating a near equivalence between the projected and actual values. The results show that increasing the φ of NP and T has led to a rise in the TC of studied NF, and at a high-T level, the maximum TC value is reached when the φ is extended to the maximum value. Also, the results indicate that T sensitivity plays a more significant role than φ in increasing the TC of WO3-CuO-Ag (35:40:25) /water NF. The maximum and minimum values of the sensitivity analysis for T equal 177.4501–431.489098 in five ANNs, and φ equals 16.2539901–37.2332646, respectively. Eight neurons are the best number in the hidden layer (HL) based on different trained ANNs." @default.
- W4385582783 created "2023-08-05" @default.
- W4385582783 creator A5001288058 @default.
- W4385582783 creator A5004432295 @default.
- W4385582783 creator A5013657515 @default.
- W4385582783 creator A5013756461 @default.
- W4385582783 creator A5018655135 @default.
- W4385582783 creator A5058054642 @default.
- W4385582783 creator A5092598108 @default.
- W4385582783 date "2023-08-01" @default.
- W4385582783 modified "2023-09-27" @default.
- W4385582783 title "Thermal conductivity prediction of WO3-CuO-Ag (35:40:25)/water hybrid ternary nanofluid with Artificial Neural Network and back-propagation algorithm" @default.
- W4385582783 cites W1994088545 @default.
- W4385582783 cites W1994406321 @default.
- W4385582783 cites W2001809099 @default.
- W4385582783 cites W2011339767 @default.
- W4385582783 cites W2036472873 @default.
- W4385582783 cites W2046837690 @default.
- W4385582783 cites W2077125839 @default.
- W4385582783 cites W2077488940 @default.
- W4385582783 cites W2078171166 @default.
- W4385582783 cites W2085893083 @default.
- W4385582783 cites W2087001254 @default.
- W4385582783 cites W2166096038 @default.
- W4385582783 cites W2549179662 @default.
- W4385582783 cites W2750522723 @default.
- W4385582783 cites W2890465787 @default.
- W4385582783 cites W2896034036 @default.
- W4385582783 cites W2935444557 @default.
- W4385582783 cites W2964684313 @default.
- W4385582783 cites W2991170986 @default.
- W4385582783 cites W3000005297 @default.
- W4385582783 cites W3006300294 @default.
- W4385582783 cites W3006723896 @default.
- W4385582783 cites W3023776666 @default.
- W4385582783 cites W3040301301 @default.
- W4385582783 cites W3047746993 @default.
- W4385582783 cites W3086258500 @default.
- W4385582783 cites W3107380922 @default.
- W4385582783 cites W3124856500 @default.
- W4385582783 cites W3154706661 @default.
- W4385582783 cites W3161224836 @default.
- W4385582783 cites W3198822478 @default.
- W4385582783 cites W3202373203 @default.
- W4385582783 cites W3215475108 @default.
- W4385582783 cites W4214898897 @default.
- W4385582783 cites W4225115328 @default.
- W4385582783 cites W4293079902 @default.
- W4385582783 cites W4296773473 @default.
- W4385582783 cites W4298007065 @default.
- W4385582783 cites W4311711603 @default.
- W4385582783 cites W944912343 @default.
- W4385582783 doi "https://doi.org/10.1016/j.mtcomm.2023.106807" @default.
- W4385582783 hasPublicationYear "2023" @default.
- W4385582783 type Work @default.
- W4385582783 citedByCount "0" @default.
- W4385582783 crossrefType "journal-article" @default.
- W4385582783 hasAuthorship W4385582783A5001288058 @default.
- W4385582783 hasAuthorship W4385582783A5004432295 @default.
- W4385582783 hasAuthorship W4385582783A5013657515 @default.
- W4385582783 hasAuthorship W4385582783A5013756461 @default.
- W4385582783 hasAuthorship W4385582783A5018655135 @default.
- W4385582783 hasAuthorship W4385582783A5058054642 @default.
- W4385582783 hasAuthorship W4385582783A5092598108 @default.
- W4385582783 hasConcept C119857082 @default.
- W4385582783 hasConcept C121332964 @default.
- W4385582783 hasConcept C155672457 @default.
- W4385582783 hasConcept C159985019 @default.
- W4385582783 hasConcept C171250308 @default.
- W4385582783 hasConcept C192562407 @default.
- W4385582783 hasConcept C199360897 @default.
- W4385582783 hasConcept C21946209 @default.
- W4385582783 hasConcept C41008148 @default.
- W4385582783 hasConcept C50644808 @default.
- W4385582783 hasConcept C64452783 @default.
- W4385582783 hasConcept C65590680 @default.
- W4385582783 hasConcept C97346530 @default.
- W4385582783 hasConcept C97355855 @default.
- W4385582783 hasConceptScore W4385582783C119857082 @default.
- W4385582783 hasConceptScore W4385582783C121332964 @default.
- W4385582783 hasConceptScore W4385582783C155672457 @default.
- W4385582783 hasConceptScore W4385582783C159985019 @default.
- W4385582783 hasConceptScore W4385582783C171250308 @default.
- W4385582783 hasConceptScore W4385582783C192562407 @default.
- W4385582783 hasConceptScore W4385582783C199360897 @default.
- W4385582783 hasConceptScore W4385582783C21946209 @default.
- W4385582783 hasConceptScore W4385582783C41008148 @default.
- W4385582783 hasConceptScore W4385582783C50644808 @default.
- W4385582783 hasConceptScore W4385582783C64452783 @default.
- W4385582783 hasConceptScore W4385582783C65590680 @default.
- W4385582783 hasConceptScore W4385582783C97346530 @default.
- W4385582783 hasConceptScore W4385582783C97355855 @default.
- W4385582783 hasLocation W43855827831 @default.
- W4385582783 hasOpenAccess W4385582783 @default.
- W4385582783 hasPrimaryLocation W43855827831 @default.
- W4385582783 hasRelatedWork W2041609496 @default.
- W4385582783 hasRelatedWork W2072714145 @default.
- W4385582783 hasRelatedWork W2507984219 @default.