Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385583256> ?p ?o ?g. }
- W4385583256 endingPage "104292" @default.
- W4385583256 startingPage "104292" @default.
- W4385583256 abstract "Principal component analysis (PCA) is a versatile tool for dimension reduction with many applications in finance, economics, and machine learning. This paper proposes a new approach to improving the forecasting ability of the Principal Components (PCs) of observed high-dimensional predictors in a factor-augmented forecasting framework. The approach is carried out in a three-step procedure, where we first perform a nonparametric kernel regression of the target variable on each predictor to obtain a new high-dimensional predictor vector formed by stacking all estimated kernel regression functions, we then extract PCs from these new predictors using PCA, and finally, we employ the extracted PCs as predictors to forecast the target variable. A real example on macroeconomic forecasting is analyzed and numerical results show that the proposed kernel PCA can outperform some commonly used forecasting approaches in out-of-sample prediction." @default.
- W4385583256 created "2023-08-05" @default.
- W4385583256 creator A5033579806 @default.
- W4385583256 creator A5047683819 @default.
- W4385583256 creator A5091323404 @default.
- W4385583256 date "2023-12-01" @default.
- W4385583256 modified "2023-09-26" @default.
- W4385583256 title "Supervised kernel principal component analysis for forecasting" @default.
- W4385583256 cites W1593060747 @default.
- W4385583256 cites W1971713783 @default.
- W4385583256 cites W2000632882 @default.
- W4385583256 cites W2014165366 @default.
- W4385583256 cites W2027244596 @default.
- W4385583256 cites W2038601479 @default.
- W4385583256 cites W2059507684 @default.
- W4385583256 cites W2113930757 @default.
- W4385583256 cites W2159706540 @default.
- W4385583256 cites W2257263437 @default.
- W4385583256 cites W3021406874 @default.
- W4385583256 cites W3040514440 @default.
- W4385583256 cites W3124791446 @default.
- W4385583256 cites W3125239845 @default.
- W4385583256 cites W3167655401 @default.
- W4385583256 cites W3216401771 @default.
- W4385583256 cites W4224125953 @default.
- W4385583256 cites W4230841866 @default.
- W4385583256 cites W4303520949 @default.
- W4385583256 cites W4317696162 @default.
- W4385583256 doi "https://doi.org/10.1016/j.frl.2023.104292" @default.
- W4385583256 hasPublicationYear "2023" @default.
- W4385583256 type Work @default.
- W4385583256 citedByCount "0" @default.
- W4385583256 crossrefType "journal-article" @default.
- W4385583256 hasAuthorship W4385583256A5033579806 @default.
- W4385583256 hasAuthorship W4385583256A5047683819 @default.
- W4385583256 hasAuthorship W4385583256A5091323404 @default.
- W4385583256 hasConcept C102366305 @default.
- W4385583256 hasConcept C105795698 @default.
- W4385583256 hasConcept C114614502 @default.
- W4385583256 hasConcept C119857082 @default.
- W4385583256 hasConcept C122280245 @default.
- W4385583256 hasConcept C12267149 @default.
- W4385583256 hasConcept C124101348 @default.
- W4385583256 hasConcept C134306372 @default.
- W4385583256 hasConcept C149782125 @default.
- W4385583256 hasConcept C154945302 @default.
- W4385583256 hasConcept C182335926 @default.
- W4385583256 hasConcept C182365436 @default.
- W4385583256 hasConcept C200695384 @default.
- W4385583256 hasConcept C202444582 @default.
- W4385583256 hasConcept C27438332 @default.
- W4385583256 hasConcept C33676613 @default.
- W4385583256 hasConcept C33923547 @default.
- W4385583256 hasConcept C41008148 @default.
- W4385583256 hasConcept C70518039 @default.
- W4385583256 hasConcept C74193536 @default.
- W4385583256 hasConcept C74887250 @default.
- W4385583256 hasConcept C83546350 @default.
- W4385583256 hasConceptScore W4385583256C102366305 @default.
- W4385583256 hasConceptScore W4385583256C105795698 @default.
- W4385583256 hasConceptScore W4385583256C114614502 @default.
- W4385583256 hasConceptScore W4385583256C119857082 @default.
- W4385583256 hasConceptScore W4385583256C122280245 @default.
- W4385583256 hasConceptScore W4385583256C12267149 @default.
- W4385583256 hasConceptScore W4385583256C124101348 @default.
- W4385583256 hasConceptScore W4385583256C134306372 @default.
- W4385583256 hasConceptScore W4385583256C149782125 @default.
- W4385583256 hasConceptScore W4385583256C154945302 @default.
- W4385583256 hasConceptScore W4385583256C182335926 @default.
- W4385583256 hasConceptScore W4385583256C182365436 @default.
- W4385583256 hasConceptScore W4385583256C200695384 @default.
- W4385583256 hasConceptScore W4385583256C202444582 @default.
- W4385583256 hasConceptScore W4385583256C27438332 @default.
- W4385583256 hasConceptScore W4385583256C33676613 @default.
- W4385583256 hasConceptScore W4385583256C33923547 @default.
- W4385583256 hasConceptScore W4385583256C41008148 @default.
- W4385583256 hasConceptScore W4385583256C70518039 @default.
- W4385583256 hasConceptScore W4385583256C74193536 @default.
- W4385583256 hasConceptScore W4385583256C74887250 @default.
- W4385583256 hasConceptScore W4385583256C83546350 @default.
- W4385583256 hasFunder F4320321001 @default.
- W4385583256 hasFunder F4320332552 @default.
- W4385583256 hasLocation W43855832561 @default.
- W4385583256 hasOpenAccess W4385583256 @default.
- W4385583256 hasPrimaryLocation W43855832561 @default.
- W4385583256 hasRelatedWork W1998640076 @default.
- W4385583256 hasRelatedWork W2056356741 @default.
- W4385583256 hasRelatedWork W2145759202 @default.
- W4385583256 hasRelatedWork W2347793650 @default.
- W4385583256 hasRelatedWork W2360554910 @default.
- W4385583256 hasRelatedWork W2951785448 @default.
- W4385583256 hasRelatedWork W3078753841 @default.
- W4385583256 hasRelatedWork W4226388815 @default.
- W4385583256 hasRelatedWork W5114324 @default.
- W4385583256 hasRelatedWork W4221146089 @default.
- W4385583256 hasVolume "58" @default.
- W4385583256 isParatext "false" @default.
- W4385583256 isRetracted "false" @default.