Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385583359> ?p ?o ?g. }
- W4385583359 abstract "<sec> <title>BACKGROUND</title> Breast cancer affects the lives of not only those diagnosed, but also the people around them. Many of those affected share their experiences on social media. However, these narratives may differ according to who the poster is and their relationship with the patient; a patient posting about their experiences may post different content from someone who’s friends or family has breast cancer. In China, Weibo is one of the most popular social media platforms, and breast cancer-related posts are frequently found there. We used Weibo as a resource to examine how posts differ according to the different poster-patient relationships </sec> <sec> <title>OBJECTIVE</title> With the goal of understanding the different experiences of those affected by breast cancer in China, we aim to explore how content and language used in relevant posts differ according to who the poster is, and their relationship with the patient. Our goal is to examine if there are differences in emotional expression and topic content if the patient is the poster themselves, or a friend, family, relative or acquaintance. </sec> <sec> <title>METHODS</title> We scraped a total of N=10322 relevant Weibo posts. Using a 2-step analysis method, we first fine-tune two Chinese RoBERTa models, on a dataset annotated with poster-patient relationships. These models were lined in sequence, first a binary classifier (‘no_patient’ or ‘patient’), and multiclass classifier (‘post_user’, ‘family_members’, ‘friends_relatives’, ‘acquaintances’, ‘heard_relation’) to classify patient relationships. Next, we used the LIWC lexicon to conduct sentiment analysis on 5 emotion categories (positive and negative emotions, anger, sadness, and anxiety), followed by topic modeling (BERTopic). </sec> <sec> <title>RESULTS</title> Our binary model (F1 = 0.93) and multiclass model (F1 = 0.83) were largely able to classify patient relationships accurately. Subsequent sentiment analyses showed significant differences in emotion categories across all patient relationships. Notably, negative emotions and anger were higher for the ‘no_patient’ class, but sadness and anxiety were higher for the ‘family_member’ class. Focusing on the top 30 topics, we also noted that topics about fears and rage towards cancer were higher in the ‘no_patient’ class, but topics about cancer treatment were higher in the ‘family_member’ class. </sec> <sec> <title>CONCLUSIONS</title> Chinese users posted different types of content depending on the poster-patient relationship. If the patient was family, posts were sadder and more anxious, but also contained more content on treatments. However, if no patient was detected, posts showed high levels of anger. We think that this may be the poster ranting, which may help with emotion regulation and gathering social support. </sec>" @default.
- W4385583359 created "2023-08-05" @default.
- W4385583359 creator A5005540314 @default.
- W4385583359 creator A5005815315 @default.
- W4385583359 creator A5010572901 @default.
- W4385583359 creator A5041089475 @default.
- W4385583359 creator A5046718849 @default.
- W4385583359 creator A5069698158 @default.
- W4385583359 creator A5077652551 @default.
- W4385583359 date "2023-07-28" @default.
- W4385583359 modified "2023-09-27" @default.
- W4385583359 title "Poster-patients relationships show differing content and language on Chinese Weibo: Text classification, sentiment analysis, and topic modeling of posts on breast cancer (Preprint)" @default.
- W4385583359 cites W1538359291 @default.
- W4385583359 cites W1901616594 @default.
- W4385583359 cites W1982127537 @default.
- W4385583359 cites W2014610539 @default.
- W4385583359 cites W2037888602 @default.
- W4385583359 cites W2039316242 @default.
- W4385583359 cites W2083512721 @default.
- W4385583359 cites W2130437579 @default.
- W4385583359 cites W2130713906 @default.
- W4385583359 cites W2148122886 @default.
- W4385583359 cites W2150428552 @default.
- W4385583359 cites W2166202924 @default.
- W4385583359 cites W2170898127 @default.
- W4385583359 cites W23809677 @default.
- W4385583359 cites W2406501289 @default.
- W4385583359 cites W2419324624 @default.
- W4385583359 cites W2517884444 @default.
- W4385583359 cites W2566587171 @default.
- W4385583359 cites W2727553907 @default.
- W4385583359 cites W2885754349 @default.
- W4385583359 cites W2890018522 @default.
- W4385583359 cites W2954311168 @default.
- W4385583359 cites W2964178346 @default.
- W4385583359 cites W3011486546 @default.
- W4385583359 cites W3102725307 @default.
- W4385583359 cites W3128646645 @default.
- W4385583359 cites W3210097349 @default.
- W4385583359 cites W4200543371 @default.
- W4385583359 cites W4240861882 @default.
- W4385583359 cites W4281291858 @default.
- W4385583359 cites W4285809493 @default.
- W4385583359 cites W4310947449 @default.
- W4385583359 cites W4311099385 @default.
- W4385583359 doi "https://doi.org/10.2196/preprints.51332" @default.
- W4385583359 hasPublicationYear "2023" @default.
- W4385583359 type Work @default.
- W4385583359 citedByCount "0" @default.
- W4385583359 crossrefType "posted-content" @default.
- W4385583359 hasAuthorship W4385583359A5005540314 @default.
- W4385583359 hasAuthorship W4385583359A5005815315 @default.
- W4385583359 hasAuthorship W4385583359A5010572901 @default.
- W4385583359 hasAuthorship W4385583359A5041089475 @default.
- W4385583359 hasAuthorship W4385583359A5046718849 @default.
- W4385583359 hasAuthorship W4385583359A5069698158 @default.
- W4385583359 hasAuthorship W4385583359A5077652551 @default.
- W4385583359 hasConcept C121608353 @default.
- W4385583359 hasConcept C126322002 @default.
- W4385583359 hasConcept C136764020 @default.
- W4385583359 hasConcept C138885662 @default.
- W4385583359 hasConcept C143275388 @default.
- W4385583359 hasConcept C144024400 @default.
- W4385583359 hasConcept C154945302 @default.
- W4385583359 hasConcept C15744967 @default.
- W4385583359 hasConcept C162446236 @default.
- W4385583359 hasConcept C199033989 @default.
- W4385583359 hasConcept C204321447 @default.
- W4385583359 hasConcept C36289849 @default.
- W4385583359 hasConcept C41008148 @default.
- W4385583359 hasConcept C41895202 @default.
- W4385583359 hasConcept C518677369 @default.
- W4385583359 hasConcept C530470458 @default.
- W4385583359 hasConcept C66402592 @default.
- W4385583359 hasConcept C71924100 @default.
- W4385583359 hasConcept C75630572 @default.
- W4385583359 hasConceptScore W4385583359C121608353 @default.
- W4385583359 hasConceptScore W4385583359C126322002 @default.
- W4385583359 hasConceptScore W4385583359C136764020 @default.
- W4385583359 hasConceptScore W4385583359C138885662 @default.
- W4385583359 hasConceptScore W4385583359C143275388 @default.
- W4385583359 hasConceptScore W4385583359C144024400 @default.
- W4385583359 hasConceptScore W4385583359C154945302 @default.
- W4385583359 hasConceptScore W4385583359C15744967 @default.
- W4385583359 hasConceptScore W4385583359C162446236 @default.
- W4385583359 hasConceptScore W4385583359C199033989 @default.
- W4385583359 hasConceptScore W4385583359C204321447 @default.
- W4385583359 hasConceptScore W4385583359C36289849 @default.
- W4385583359 hasConceptScore W4385583359C41008148 @default.
- W4385583359 hasConceptScore W4385583359C41895202 @default.
- W4385583359 hasConceptScore W4385583359C518677369 @default.
- W4385583359 hasConceptScore W4385583359C530470458 @default.
- W4385583359 hasConceptScore W4385583359C66402592 @default.
- W4385583359 hasConceptScore W4385583359C71924100 @default.
- W4385583359 hasConceptScore W4385583359C75630572 @default.
- W4385583359 hasLocation W43855833591 @default.
- W4385583359 hasOpenAccess W4385583359 @default.
- W4385583359 hasPrimaryLocation W43855833591 @default.
- W4385583359 hasRelatedWork W1983021219 @default.
- W4385583359 hasRelatedWork W2088249598 @default.