Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385584865> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4385584865 endingPage "30" @default.
- W4385584865 startingPage "18" @default.
- W4385584865 abstract "Recently, several studies have stated that mild weather can perhaps halt the global epidemic, which has already afflicted over 1.6 million people globally. Clarification of such correlations in the worst affected country, the US, can be extremely valuable to understand the function of weather in transmission of the disease in the highly populated countries, such as India. The authors developed a machine-learning approach as logistic regression classification models that used data from several sources to determine whether a patient is at risk of COVID-19 using one of the classification models with the greatest accuracy. They are working on a model that uses simple features available through basic clinical inquiries to detect COVID-19 patients. When testing resources are tight, their approach can be used to prioritize testing for COVID-19, among other things." @default.
- W4385584865 created "2023-08-05" @default.
- W4385584865 creator A5012674482 @default.
- W4385584865 date "2023-06-30" @default.
- W4385584865 modified "2023-09-27" @default.
- W4385584865 title "A Novel Approach for Predicting COVID-19 Using Machine Learning-Based Logistic Regression Classification MODEL" @default.
- W4385584865 cites W2738579427 @default.
- W4385584865 cites W2963011882 @default.
- W4385584865 cites W3015353977 @default.
- W4385584865 cites W3019674250 @default.
- W4385584865 cites W3032127696 @default.
- W4385584865 cites W3034475761 @default.
- W4385584865 cites W3047203988 @default.
- W4385584865 cites W3049111764 @default.
- W4385584865 cites W3102015846 @default.
- W4385584865 cites W3105797516 @default.
- W4385584865 cites W3120489029 @default.
- W4385584865 cites W3150709252 @default.
- W4385584865 cites W3170326672 @default.
- W4385584865 doi "https://doi.org/10.4018/978-1-6684-8306-0.ch002" @default.
- W4385584865 hasPublicationYear "2023" @default.
- W4385584865 type Work @default.
- W4385584865 citedByCount "0" @default.
- W4385584865 crossrefType "book-chapter" @default.
- W4385584865 hasAuthorship W4385584865A5012674482 @default.
- W4385584865 hasConcept C105795698 @default.
- W4385584865 hasConcept C111472728 @default.
- W4385584865 hasConcept C119857082 @default.
- W4385584865 hasConcept C138885662 @default.
- W4385584865 hasConcept C14036430 @default.
- W4385584865 hasConcept C142724271 @default.
- W4385584865 hasConcept C149782125 @default.
- W4385584865 hasConcept C151956035 @default.
- W4385584865 hasConcept C154945302 @default.
- W4385584865 hasConcept C2779134260 @default.
- W4385584865 hasConcept C2780586882 @default.
- W4385584865 hasConcept C3008058167 @default.
- W4385584865 hasConcept C33923547 @default.
- W4385584865 hasConcept C41008148 @default.
- W4385584865 hasConcept C524204448 @default.
- W4385584865 hasConcept C71924100 @default.
- W4385584865 hasConcept C761482 @default.
- W4385584865 hasConcept C76155785 @default.
- W4385584865 hasConcept C78458016 @default.
- W4385584865 hasConcept C83546350 @default.
- W4385584865 hasConcept C86803240 @default.
- W4385584865 hasConceptScore W4385584865C105795698 @default.
- W4385584865 hasConceptScore W4385584865C111472728 @default.
- W4385584865 hasConceptScore W4385584865C119857082 @default.
- W4385584865 hasConceptScore W4385584865C138885662 @default.
- W4385584865 hasConceptScore W4385584865C14036430 @default.
- W4385584865 hasConceptScore W4385584865C142724271 @default.
- W4385584865 hasConceptScore W4385584865C149782125 @default.
- W4385584865 hasConceptScore W4385584865C151956035 @default.
- W4385584865 hasConceptScore W4385584865C154945302 @default.
- W4385584865 hasConceptScore W4385584865C2779134260 @default.
- W4385584865 hasConceptScore W4385584865C2780586882 @default.
- W4385584865 hasConceptScore W4385584865C3008058167 @default.
- W4385584865 hasConceptScore W4385584865C33923547 @default.
- W4385584865 hasConceptScore W4385584865C41008148 @default.
- W4385584865 hasConceptScore W4385584865C524204448 @default.
- W4385584865 hasConceptScore W4385584865C71924100 @default.
- W4385584865 hasConceptScore W4385584865C761482 @default.
- W4385584865 hasConceptScore W4385584865C76155785 @default.
- W4385584865 hasConceptScore W4385584865C78458016 @default.
- W4385584865 hasConceptScore W4385584865C83546350 @default.
- W4385584865 hasConceptScore W4385584865C86803240 @default.
- W4385584865 hasLocation W43855848651 @default.
- W4385584865 hasOpenAccess W4385584865 @default.
- W4385584865 hasPrimaryLocation W43855848651 @default.
- W4385584865 hasRelatedWork W2077376691 @default.
- W4385584865 hasRelatedWork W2961085424 @default.
- W4385584865 hasRelatedWork W3046775127 @default.
- W4385584865 hasRelatedWork W3170094116 @default.
- W4385584865 hasRelatedWork W4205958290 @default.
- W4385584865 hasRelatedWork W4285260836 @default.
- W4385584865 hasRelatedWork W4286629047 @default.
- W4385584865 hasRelatedWork W4306321456 @default.
- W4385584865 hasRelatedWork W4306674287 @default.
- W4385584865 hasRelatedWork W4224009465 @default.
- W4385584865 isParatext "false" @default.
- W4385584865 isRetracted "false" @default.
- W4385584865 workType "book-chapter" @default.