Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385584893> ?p ?o ?g. }
- W4385584893 endingPage "198" @default.
- W4385584893 startingPage "181" @default.
- W4385584893 abstract "In recent years, deep learning and its subtopics have found a near gold-rush stature in the industry. This booming response has not been restricted to niche applications, but rather to titanic domains such as healthcare, self-driving cars, cybersecurity, and more. This “rise” has consequently led to a large influx of practitioners and users to this domain. One such subdomain is generative adversarial networks (GANs), an application of deep learning centered on image segmentation. The researchers aim to study the trajectory of and attempt to extrapolate the future of this subdomain in an attempt to discern if the meteoric rise of this technique is based on concrete positive results or a trend deemed to ebb. This study aims to first gather the most salient aspects and recent advancements of GANs. Specifically, the study emphasizes the importance of GANs and presents differing types utilized in various domains. Finally, the researchers present the current research gaps and the difficulties that could potentially be faced in the attainment of the aforementioned trajectory of this field." @default.
- W4385584893 created "2023-08-05" @default.
- W4385584893 creator A5014729776 @default.
- W4385584893 creator A5016084046 @default.
- W4385584893 creator A5042578636 @default.
- W4385584893 creator A5046730065 @default.
- W4385584893 creator A5062336233 @default.
- W4385584893 date "2023-06-30" @default.
- W4385584893 modified "2023-10-16" @default.
- W4385584893 title "Generative Adversarial Networks the Future of Consumer Deep Learning?" @default.
- W4385584893 cites W2519536754 @default.
- W4385584893 cites W2520348032 @default.
- W4385584893 cites W2520707650 @default.
- W4385584893 cites W2557414982 @default.
- W4385584893 cites W2807223385 @default.
- W4385584893 cites W2888723145 @default.
- W4385584893 cites W2904226860 @default.
- W4385584893 cites W2963630103 @default.
- W4385584893 cites W2963800363 @default.
- W4385584893 cites W3029816221 @default.
- W4385584893 cites W3046095786 @default.
- W4385584893 cites W3119346555 @default.
- W4385584893 cites W3128607711 @default.
- W4385584893 cites W3129801525 @default.
- W4385584893 cites W3140854437 @default.
- W4385584893 cites W3173998882 @default.
- W4385584893 cites W3194378639 @default.
- W4385584893 cites W3210047443 @default.
- W4385584893 cites W3212367101 @default.
- W4385584893 cites W4200468156 @default.
- W4385584893 cites W4205505376 @default.
- W4385584893 cites W4207032033 @default.
- W4385584893 cites W4207083865 @default.
- W4385584893 cites W4229080696 @default.
- W4385584893 cites W4285307600 @default.
- W4385584893 cites W4285585446 @default.
- W4385584893 cites W4307717513 @default.
- W4385584893 cites W4311216173 @default.
- W4385584893 cites W4313065289 @default.
- W4385584893 cites W4352981324 @default.
- W4385584893 doi "https://doi.org/10.4018/978-1-6684-8306-0.ch012" @default.
- W4385584893 hasPublicationYear "2023" @default.
- W4385584893 type Work @default.
- W4385584893 citedByCount "0" @default.
- W4385584893 crossrefType "book-chapter" @default.
- W4385584893 hasAuthorship W4385584893A5014729776 @default.
- W4385584893 hasAuthorship W4385584893A5016084046 @default.
- W4385584893 hasAuthorship W4385584893A5042578636 @default.
- W4385584893 hasAuthorship W4385584893A5046730065 @default.
- W4385584893 hasAuthorship W4385584893A5062336233 @default.
- W4385584893 hasConcept C108583219 @default.
- W4385584893 hasConcept C121332964 @default.
- W4385584893 hasConcept C1276947 @default.
- W4385584893 hasConcept C134306372 @default.
- W4385584893 hasConcept C13662910 @default.
- W4385584893 hasConcept C154945302 @default.
- W4385584893 hasConcept C166957645 @default.
- W4385584893 hasConcept C202444582 @default.
- W4385584893 hasConcept C205649164 @default.
- W4385584893 hasConcept C2522767166 @default.
- W4385584893 hasConcept C2780719617 @default.
- W4385584893 hasConcept C2780750054 @default.
- W4385584893 hasConcept C33923547 @default.
- W4385584893 hasConcept C36503486 @default.
- W4385584893 hasConcept C37736160 @default.
- W4385584893 hasConcept C39890363 @default.
- W4385584893 hasConcept C41008148 @default.
- W4385584893 hasConcept C9652623 @default.
- W4385584893 hasConceptScore W4385584893C108583219 @default.
- W4385584893 hasConceptScore W4385584893C121332964 @default.
- W4385584893 hasConceptScore W4385584893C1276947 @default.
- W4385584893 hasConceptScore W4385584893C134306372 @default.
- W4385584893 hasConceptScore W4385584893C13662910 @default.
- W4385584893 hasConceptScore W4385584893C154945302 @default.
- W4385584893 hasConceptScore W4385584893C166957645 @default.
- W4385584893 hasConceptScore W4385584893C202444582 @default.
- W4385584893 hasConceptScore W4385584893C205649164 @default.
- W4385584893 hasConceptScore W4385584893C2522767166 @default.
- W4385584893 hasConceptScore W4385584893C2780719617 @default.
- W4385584893 hasConceptScore W4385584893C2780750054 @default.
- W4385584893 hasConceptScore W4385584893C33923547 @default.
- W4385584893 hasConceptScore W4385584893C36503486 @default.
- W4385584893 hasConceptScore W4385584893C37736160 @default.
- W4385584893 hasConceptScore W4385584893C39890363 @default.
- W4385584893 hasConceptScore W4385584893C41008148 @default.
- W4385584893 hasConceptScore W4385584893C9652623 @default.
- W4385584893 hasLocation W43855848931 @default.
- W4385584893 hasOpenAccess W4385584893 @default.
- W4385584893 hasPrimaryLocation W43855848931 @default.
- W4385584893 hasRelatedWork W2783984318 @default.
- W4385584893 hasRelatedWork W2901368259 @default.
- W4385584893 hasRelatedWork W3017161950 @default.
- W4385584893 hasRelatedWork W3156291593 @default.
- W4385584893 hasRelatedWork W3198184493 @default.
- W4385584893 hasRelatedWork W4294294211 @default.
- W4385584893 hasRelatedWork W4310580317 @default.
- W4385584893 hasRelatedWork W4312831135 @default.
- W4385584893 hasRelatedWork W4367016332 @default.