Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385584953> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4385584953 abstract "Abstract To smoothly realize the information conversion from the original language information to the target language, this paper constructs a deep learning-based fuzzy translation model for news reports so that the translated text can faithfully convey the meaning of the original language text information and achieve natural semantic equivalence. A neural probabilistic language model is used to construct objective functions in speech recognition and lexical annotation so that the translated text can provide a more appropriate linguistic representation of the polysemantic words in the original language text according to the differences in contextual morphology. A deep learning occurrence mechanism model is constructed through fuzzy semantic reasoning and fuzzy translation logic, and learning state indicators such as emotional interaction are designed to evaluate the occurrence status of fuzzy translation accurately. The simulation results show that the natural language processing (GLUE) test score of the deep learning-based fuzzy translation model for news reports is 89.8, 9.2, and 6.9 points higher than 80.6 and 82.9 for the other two models, respectively. The average error discrimination ability of the model designed in this paper is 93.57, and the average training set, development set, and test set values are 98.425, 10.16, and 45.95, respectively. Thus, it can be seen that the deep learning-based fuzzy translation model for news reports can more naturally and accurately respond to the dynamic changes in language, which promotes the rapid development of translation theory and practice." @default.
- W4385584953 created "2023-08-05" @default.
- W4385584953 creator A5072679329 @default.
- W4385584953 date "2023-06-09" @default.
- W4385584953 modified "2023-09-29" @default.
- W4385584953 title "Deep Learning-based Fuzzy Translation Problem in Chinese-English Epidemic News Reporting" @default.
- W4385584953 cites W1120269880 @default.
- W4385584953 cites W2596698807 @default.
- W4385584953 cites W2767689310 @default.
- W4385584953 cites W2782377436 @default.
- W4385584953 cites W2794339543 @default.
- W4385584953 cites W2803268045 @default.
- W4385584953 cites W2805110416 @default.
- W4385584953 cites W2888968940 @default.
- W4385584953 cites W2896281166 @default.
- W4385584953 cites W2901595777 @default.
- W4385584953 cites W2914893118 @default.
- W4385584953 cites W2937905943 @default.
- W4385584953 cites W2952505933 @default.
- W4385584953 cites W2965153464 @default.
- W4385584953 cites W2998490310 @default.
- W4385584953 cites W3122653692 @default.
- W4385584953 cites W3210070512 @default.
- W4385584953 cites W4206593392 @default.
- W4385584953 cites W4211167147 @default.
- W4385584953 cites W4220749360 @default.
- W4385584953 cites W4281629103 @default.
- W4385584953 cites W4283826630 @default.
- W4385584953 cites W4285205949 @default.
- W4385584953 doi "https://doi.org/10.2478/amns.2023.1.00380" @default.
- W4385584953 hasPublicationYear "2023" @default.
- W4385584953 type Work @default.
- W4385584953 citedByCount "0" @default.
- W4385584953 crossrefType "journal-article" @default.
- W4385584953 hasAuthorship W4385584953A5072679329 @default.
- W4385584953 hasBestOaLocation W43855849531 @default.
- W4385584953 hasConcept C108583219 @default.
- W4385584953 hasConcept C138885662 @default.
- W4385584953 hasConcept C154945302 @default.
- W4385584953 hasConcept C169903167 @default.
- W4385584953 hasConcept C195324797 @default.
- W4385584953 hasConcept C203005215 @default.
- W4385584953 hasConcept C204321447 @default.
- W4385584953 hasConcept C2129575 @default.
- W4385584953 hasConcept C2780069185 @default.
- W4385584953 hasConcept C2986862884 @default.
- W4385584953 hasConcept C37926939 @default.
- W4385584953 hasConcept C41008148 @default.
- W4385584953 hasConcept C41895202 @default.
- W4385584953 hasConcept C511149849 @default.
- W4385584953 hasConcept C58166 @default.
- W4385584953 hasConceptScore W4385584953C108583219 @default.
- W4385584953 hasConceptScore W4385584953C138885662 @default.
- W4385584953 hasConceptScore W4385584953C154945302 @default.
- W4385584953 hasConceptScore W4385584953C169903167 @default.
- W4385584953 hasConceptScore W4385584953C195324797 @default.
- W4385584953 hasConceptScore W4385584953C203005215 @default.
- W4385584953 hasConceptScore W4385584953C204321447 @default.
- W4385584953 hasConceptScore W4385584953C2129575 @default.
- W4385584953 hasConceptScore W4385584953C2780069185 @default.
- W4385584953 hasConceptScore W4385584953C2986862884 @default.
- W4385584953 hasConceptScore W4385584953C37926939 @default.
- W4385584953 hasConceptScore W4385584953C41008148 @default.
- W4385584953 hasConceptScore W4385584953C41895202 @default.
- W4385584953 hasConceptScore W4385584953C511149849 @default.
- W4385584953 hasConceptScore W4385584953C58166 @default.
- W4385584953 hasIssue "0" @default.
- W4385584953 hasLocation W43855849531 @default.
- W4385584953 hasOpenAccess W4385584953 @default.
- W4385584953 hasPrimaryLocation W43855849531 @default.
- W4385584953 hasRelatedWork W1484029852 @default.
- W4385584953 hasRelatedWork W1512718085 @default.
- W4385584953 hasRelatedWork W2132471227 @default.
- W4385584953 hasRelatedWork W2786274496 @default.
- W4385584953 hasRelatedWork W2914514991 @default.
- W4385584953 hasRelatedWork W3082797515 @default.
- W4385584953 hasRelatedWork W3198474835 @default.
- W4385584953 hasRelatedWork W4379525811 @default.
- W4385584953 hasRelatedWork W2059087976 @default.
- W4385584953 hasRelatedWork W2610387714 @default.
- W4385584953 hasVolume "0" @default.
- W4385584953 isParatext "false" @default.
- W4385584953 isRetracted "false" @default.
- W4385584953 workType "article" @default.