Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385586952> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4385586952 abstract "Digitized documents are increasingly becoming prevalent in various industries. The ability to accurately classify these documents is critical for efficient and effective management. However, digitized documents often come in different formats, making document classification a challenging task. In this paper, we propose a multimodal deep learning approach for digitized document classification. The proposed approach combines both text and image modalities to improve classification accuracy. The model architecture consists of a convolutional neural network (CNN) for image processing and a recurrent neural network (RNN) for text processing. The output features from the two modalities are then merged using a fusion layer to generate the final classification result. The proposed approach is evaluated on a dataset of digitized documents from various industries, including finance, healthcare, and legal fields. The experimental results demonstrate that the multimodal approach outperforms single-modality approaches, achieving high accuracy for document classification. The proposed model has significant potential for applications in various industries that rely heavily on document management systems. For example, in the finance industry, the proposed model can be used to classify loan applications or financial statements. In the healthcare industry, the model can classify patient records, medical images, and other medical documents. In the legal industry, the model can classify legal documents, contracts, and court filings. Overall, the proposed multimodal deep learning approach can significantly improve document classification accuracy, thus enhancing the efficiency and effectiveness of document management systems." @default.
- W4385586952 created "2023-08-05" @default.
- W4385586952 creator A5092089293 @default.
- W4385586952 creator A5092599000 @default.
- W4385586952 creator A5092599001 @default.
- W4385586952 creator A5092599002 @default.
- W4385586952 creator A5092599003 @default.
- W4385586952 creator A5092599004 @default.
- W4385586952 date "2023-01-01" @default.
- W4385586952 modified "2023-09-25" @default.
- W4385586952 title "A Novel 2D Deep Convolutional Neural Network for Multimodal Document Categorization" @default.
- W4385586952 doi "https://doi.org/10.14569/ijacsa.2023.0140779" @default.
- W4385586952 hasPublicationYear "2023" @default.
- W4385586952 type Work @default.
- W4385586952 citedByCount "0" @default.
- W4385586952 crossrefType "journal-article" @default.
- W4385586952 hasAuthorship W4385586952A5092089293 @default.
- W4385586952 hasAuthorship W4385586952A5092599000 @default.
- W4385586952 hasAuthorship W4385586952A5092599001 @default.
- W4385586952 hasAuthorship W4385586952A5092599002 @default.
- W4385586952 hasAuthorship W4385586952A5092599003 @default.
- W4385586952 hasAuthorship W4385586952A5092599004 @default.
- W4385586952 hasBestOaLocation W43855869521 @default.
- W4385586952 hasConcept C10138342 @default.
- W4385586952 hasConcept C108583219 @default.
- W4385586952 hasConcept C119857082 @default.
- W4385586952 hasConcept C124101348 @default.
- W4385586952 hasConcept C144024400 @default.
- W4385586952 hasConcept C154945302 @default.
- W4385586952 hasConcept C162324750 @default.
- W4385586952 hasConcept C17744445 @default.
- W4385586952 hasConcept C199539241 @default.
- W4385586952 hasConcept C23123220 @default.
- W4385586952 hasConcept C2777764128 @default.
- W4385586952 hasConcept C2779903281 @default.
- W4385586952 hasConcept C2780226545 @default.
- W4385586952 hasConcept C2780479914 @default.
- W4385586952 hasConcept C2993995455 @default.
- W4385586952 hasConcept C36289849 @default.
- W4385586952 hasConcept C41008148 @default.
- W4385586952 hasConcept C81363708 @default.
- W4385586952 hasConcept C94124525 @default.
- W4385586952 hasConceptScore W4385586952C10138342 @default.
- W4385586952 hasConceptScore W4385586952C108583219 @default.
- W4385586952 hasConceptScore W4385586952C119857082 @default.
- W4385586952 hasConceptScore W4385586952C124101348 @default.
- W4385586952 hasConceptScore W4385586952C144024400 @default.
- W4385586952 hasConceptScore W4385586952C154945302 @default.
- W4385586952 hasConceptScore W4385586952C162324750 @default.
- W4385586952 hasConceptScore W4385586952C17744445 @default.
- W4385586952 hasConceptScore W4385586952C199539241 @default.
- W4385586952 hasConceptScore W4385586952C23123220 @default.
- W4385586952 hasConceptScore W4385586952C2777764128 @default.
- W4385586952 hasConceptScore W4385586952C2779903281 @default.
- W4385586952 hasConceptScore W4385586952C2780226545 @default.
- W4385586952 hasConceptScore W4385586952C2780479914 @default.
- W4385586952 hasConceptScore W4385586952C2993995455 @default.
- W4385586952 hasConceptScore W4385586952C36289849 @default.
- W4385586952 hasConceptScore W4385586952C41008148 @default.
- W4385586952 hasConceptScore W4385586952C81363708 @default.
- W4385586952 hasConceptScore W4385586952C94124525 @default.
- W4385586952 hasIssue "7" @default.
- W4385586952 hasLocation W43855869521 @default.
- W4385586952 hasOpenAccess W4385586952 @default.
- W4385586952 hasPrimaryLocation W43855869521 @default.
- W4385586952 hasRelatedWork W2096647984 @default.
- W4385586952 hasRelatedWork W2731899572 @default.
- W4385586952 hasRelatedWork W2999805992 @default.
- W4385586952 hasRelatedWork W3116150086 @default.
- W4385586952 hasRelatedWork W3133861977 @default.
- W4385586952 hasRelatedWork W4200173597 @default.
- W4385586952 hasRelatedWork W4312417841 @default.
- W4385586952 hasRelatedWork W4321369474 @default.
- W4385586952 hasRelatedWork W4380075502 @default.
- W4385586952 hasRelatedWork W4384103574 @default.
- W4385586952 hasVolume "14" @default.
- W4385586952 isParatext "false" @default.
- W4385586952 isRetracted "false" @default.
- W4385586952 workType "article" @default.