Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385597095> ?p ?o ?g. }
- W4385597095 abstract "Abstract Machine learning applied to digital pathology has been increasingly used to assess kidney function and diagnose the underlying cause of chronic kidney disease (CKD). We developed a novel computational framework, clustering-based spatial analysis (CluSA), that leverages unsupervised learning to learn spatial relationships between local visual patterns in kidney tissue. This framework minimizes the need for time-consuming and impractical expert annotations. 107,471 histopathology images obtained from 172 biopsy cores were used in the clustering and in the deep learning model. To incorporate spatial information over the clustered image patterns on the biopsy sample, we spatially encoded clustered patterns with colors and performed spatial analysis through graph neural network. A random forest classifier with various groups of features were used to predict CKD. For predicting eGFR at the biopsy, we achieved a sensitivity of 0.97, specificity of 0.90, and accuracy of 0.95. AUC was 0.96. For predicting eGFR changes in one-year, we achieved a sensitivity of 0.83, specificity of 0.85, and accuracy of 0.84. AUC was 0.85. This study presents the first spatial analysis based on unsupervised machine learning algorithms. Without expert annotation, CluSA framework can not only accurately classify and predict the degree of kidney function at the biopsy and in one year, but also identify novel predictors of kidney function and renal prognosis." @default.
- W4385597095 created "2023-08-05" @default.
- W4385597095 creator A5005993471 @default.
- W4385597095 creator A5006651636 @default.
- W4385597095 creator A5017067673 @default.
- W4385597095 creator A5020252530 @default.
- W4385597095 creator A5023311441 @default.
- W4385597095 creator A5028976572 @default.
- W4385597095 creator A5047912267 @default.
- W4385597095 creator A5048199090 @default.
- W4385597095 creator A5051134237 @default.
- W4385597095 creator A5054993212 @default.
- W4385597095 creator A5057539471 @default.
- W4385597095 creator A5060556746 @default.
- W4385597095 creator A5066276241 @default.
- W4385597095 creator A5073141203 @default.
- W4385597095 creator A5074204276 @default.
- W4385597095 creator A5077773891 @default.
- W4385597095 creator A5082923675 @default.
- W4385597095 creator A5083540704 @default.
- W4385597095 creator A5086184942 @default.
- W4385597095 date "2023-08-05" @default.
- W4385597095 modified "2023-10-15" @default.
- W4385597095 title "Clustering-based spatial analysis (CluSA) framework through graph neural network for chronic kidney disease prediction using histopathology images" @default.
- W4385597095 cites W1958727675 @default.
- W4385597095 cites W1987979328 @default.
- W4385597095 cites W2019605179 @default.
- W4385597095 cites W2033723052 @default.
- W4385597095 cites W2048196288 @default.
- W4385597095 cites W2090922444 @default.
- W4385597095 cites W2094286293 @default.
- W4385597095 cites W2098140880 @default.
- W4385597095 cites W2117539524 @default.
- W4385597095 cites W2129112648 @default.
- W4385597095 cites W2155653793 @default.
- W4385597095 cites W2155965977 @default.
- W4385597095 cites W2165817472 @default.
- W4385597095 cites W2194775991 @default.
- W4385597095 cites W2220115093 @default.
- W4385597095 cites W2253429366 @default.
- W4385597095 cites W2607031541 @default.
- W4385597095 cites W2743344672 @default.
- W4385597095 cites W2743806458 @default.
- W4385597095 cites W2746791238 @default.
- W4385597095 cites W2760946358 @default.
- W4385597095 cites W2769499744 @default.
- W4385597095 cites W2783839600 @default.
- W4385597095 cites W2788667846 @default.
- W4385597095 cites W2788919350 @default.
- W4385597095 cites W2788944564 @default.
- W4385597095 cites W2884205346 @default.
- W4385597095 cites W2894084084 @default.
- W4385597095 cites W2899951262 @default.
- W4385597095 cites W2911810010 @default.
- W4385597095 cites W2942371254 @default.
- W4385597095 cites W2952003460 @default.
- W4385597095 cites W2964309882 @default.
- W4385597095 cites W2964317695 @default.
- W4385597095 cites W2971132843 @default.
- W4385597095 cites W2994910508 @default.
- W4385597095 cites W3016532273 @default.
- W4385597095 cites W3020996329 @default.
- W4385597095 cites W3033382446 @default.
- W4385597095 cites W3037097018 @default.
- W4385597095 cites W3095093830 @default.
- W4385597095 cites W3160261825 @default.
- W4385597095 cites W3191462603 @default.
- W4385597095 cites W3198762213 @default.
- W4385597095 cites W4206078729 @default.
- W4385597095 cites W4211210745 @default.
- W4385597095 cites W4220662059 @default.
- W4385597095 cites W4283745227 @default.
- W4385597095 cites W4362701060 @default.
- W4385597095 doi "https://doi.org/10.1038/s41598-023-39591-8" @default.
- W4385597095 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37543648" @default.
- W4385597095 hasPublicationYear "2023" @default.
- W4385597095 type Work @default.
- W4385597095 citedByCount "0" @default.
- W4385597095 crossrefType "journal-article" @default.
- W4385597095 hasAuthorship W4385597095A5005993471 @default.
- W4385597095 hasAuthorship W4385597095A5006651636 @default.
- W4385597095 hasAuthorship W4385597095A5017067673 @default.
- W4385597095 hasAuthorship W4385597095A5020252530 @default.
- W4385597095 hasAuthorship W4385597095A5023311441 @default.
- W4385597095 hasAuthorship W4385597095A5028976572 @default.
- W4385597095 hasAuthorship W4385597095A5047912267 @default.
- W4385597095 hasAuthorship W4385597095A5048199090 @default.
- W4385597095 hasAuthorship W4385597095A5051134237 @default.
- W4385597095 hasAuthorship W4385597095A5054993212 @default.
- W4385597095 hasAuthorship W4385597095A5057539471 @default.
- W4385597095 hasAuthorship W4385597095A5060556746 @default.
- W4385597095 hasAuthorship W4385597095A5066276241 @default.
- W4385597095 hasAuthorship W4385597095A5073141203 @default.
- W4385597095 hasAuthorship W4385597095A5074204276 @default.
- W4385597095 hasAuthorship W4385597095A5077773891 @default.
- W4385597095 hasAuthorship W4385597095A5082923675 @default.
- W4385597095 hasAuthorship W4385597095A5083540704 @default.
- W4385597095 hasAuthorship W4385597095A5086184942 @default.
- W4385597095 hasBestOaLocation W43855970951 @default.
- W4385597095 hasConcept C119857082 @default.