Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385603944> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4385603944 endingPage "19" @default.
- W4385603944 startingPage "1" @default.
- W4385603944 abstract "Structural health monitoring (SHM) system has been operating for a long time in a harsh environment, resulting in various abnormalities in the collected structural vibration monitoring data. Detecting these abnormal data not only requires user interaction but also is quite time-consuming. Inspired by the manual recognition process, a vibration data anomaly detection method based on the combined model of convolutional neural network (CNN) and long short-term memory (LSTM) network is proposed in this paper. This method simulates intelligent human decision making in two steps. First, the original data are reconstructed by two feature sequences with higher universality and smaller size. In the time domain, the residual signal is extracted from the upper and lower peak envelopes of the original data to characterize the symmetry of the data. In the frequency domain, the power spectral density sequence of the original data is extracted to characterize the interpretability of the data. Second, a CNN-LSTM model is constructed and trained which utilizes CNN to extract local high-level features of input sequence and inputs new continuous high-level feature representations into LSTM to learn global long-term dependencies of abnormal data features. For verification, the method was applied to the automatic classification of continuous monitoring data for 42 days of long-span bridge, and the average accuracy of the classification results exceeded 94% and the detection time was 78 minutes. Compared with existing methods, this method can detect abnormal data more accurately and efficiently and has a stronger generalization ability." @default.
- W4385603944 created "2023-08-05" @default.
- W4385603944 creator A5050639330 @default.
- W4385603944 creator A5072960859 @default.
- W4385603944 date "2023-08-05" @default.
- W4385603944 modified "2023-10-16" @default.
- W4385603944 title "Structural Vibration Data Anomaly Detection Based on Multiple Feature Information Using CNN-LSTM Model" @default.
- W4385603944 cites W1971498438 @default.
- W4385603944 cites W2055398556 @default.
- W4385603944 cites W2064485677 @default.
- W4385603944 cites W2064675550 @default.
- W4385603944 cites W2132112746 @default.
- W4385603944 cites W2168734429 @default.
- W4385603944 cites W2464448982 @default.
- W4385603944 cites W2614581275 @default.
- W4385603944 cites W2619830056 @default.
- W4385603944 cites W2763876302 @default.
- W4385603944 cites W2790507902 @default.
- W4385603944 cites W2791957585 @default.
- W4385603944 cites W2809064761 @default.
- W4385603944 cites W2884665291 @default.
- W4385603944 cites W2899049377 @default.
- W4385603944 cites W2902164950 @default.
- W4385603944 cites W3033621544 @default.
- W4385603944 cites W3173676488 @default.
- W4385603944 cites W3215735958 @default.
- W4385603944 cites W4200225090 @default.
- W4385603944 cites W4210382748 @default.
- W4385603944 cites W4221126655 @default.
- W4385603944 cites W4225132530 @default.
- W4385603944 cites W4250541066 @default.
- W4385603944 cites W4280493782 @default.
- W4385603944 cites W4285087164 @default.
- W4385603944 cites W4291824907 @default.
- W4385603944 cites W4297445256 @default.
- W4385603944 cites W4307997844 @default.
- W4385603944 cites W4309745938 @default.
- W4385603944 doi "https://doi.org/10.1155/2023/3906180" @default.
- W4385603944 hasPublicationYear "2023" @default.
- W4385603944 type Work @default.
- W4385603944 citedByCount "0" @default.
- W4385603944 crossrefType "journal-article" @default.
- W4385603944 hasAuthorship W4385603944A5050639330 @default.
- W4385603944 hasAuthorship W4385603944A5072960859 @default.
- W4385603944 hasBestOaLocation W43856039441 @default.
- W4385603944 hasConcept C103824480 @default.
- W4385603944 hasConcept C11413529 @default.
- W4385603944 hasConcept C138885662 @default.
- W4385603944 hasConcept C153180895 @default.
- W4385603944 hasConcept C154945302 @default.
- W4385603944 hasConcept C155512373 @default.
- W4385603944 hasConcept C2776401178 @default.
- W4385603944 hasConcept C2781067378 @default.
- W4385603944 hasConcept C31972630 @default.
- W4385603944 hasConcept C41008148 @default.
- W4385603944 hasConcept C41895202 @default.
- W4385603944 hasConcept C52622490 @default.
- W4385603944 hasConcept C739882 @default.
- W4385603944 hasConcept C81363708 @default.
- W4385603944 hasConceptScore W4385603944C103824480 @default.
- W4385603944 hasConceptScore W4385603944C11413529 @default.
- W4385603944 hasConceptScore W4385603944C138885662 @default.
- W4385603944 hasConceptScore W4385603944C153180895 @default.
- W4385603944 hasConceptScore W4385603944C154945302 @default.
- W4385603944 hasConceptScore W4385603944C155512373 @default.
- W4385603944 hasConceptScore W4385603944C2776401178 @default.
- W4385603944 hasConceptScore W4385603944C2781067378 @default.
- W4385603944 hasConceptScore W4385603944C31972630 @default.
- W4385603944 hasConceptScore W4385603944C41008148 @default.
- W4385603944 hasConceptScore W4385603944C41895202 @default.
- W4385603944 hasConceptScore W4385603944C52622490 @default.
- W4385603944 hasConceptScore W4385603944C739882 @default.
- W4385603944 hasConceptScore W4385603944C81363708 @default.
- W4385603944 hasFunder F4320321001 @default.
- W4385603944 hasLocation W43856039441 @default.
- W4385603944 hasOpenAccess W4385603944 @default.
- W4385603944 hasPrimaryLocation W43856039441 @default.
- W4385603944 hasRelatedWork W2076520961 @default.
- W4385603944 hasRelatedWork W2144059113 @default.
- W4385603944 hasRelatedWork W2146076056 @default.
- W4385603944 hasRelatedWork W2546942002 @default.
- W4385603944 hasRelatedWork W2767090503 @default.
- W4385603944 hasRelatedWork W2767651786 @default.
- W4385603944 hasRelatedWork W2811390910 @default.
- W4385603944 hasRelatedWork W3003836766 @default.
- W4385603944 hasRelatedWork W4310880831 @default.
- W4385603944 hasRelatedWork W4312376745 @default.
- W4385603944 hasVolume "2023" @default.
- W4385603944 isParatext "false" @default.
- W4385603944 isRetracted "false" @default.
- W4385603944 workType "article" @default.