Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385604725> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4385604725 abstract "Abstract An important application of CRISPR interference (CRISPRi) technology is for identifying chemicalgenetic interactions (CGIs). Discovery of genes that interact with exposure to antibiotics can yield insights to drug targets and mechanisms of action or resistance. The premise is to look for CRISPRi mutants whose relative abundance is suppressed (or enriched) in the presence of a drug when the target protein is depleted, reflecting synergistic behavior. One thing that is unique about CRISPRi experiments is that sgRNAs for a given target can induce a wide range of protein depletion. The effect of sgRNA strength can be partially predicted based on sequence features or empirically quantified by a passaging experiment. sgRNA strength interacts in a non-linear way with drug sensitivity, producing an effect where the concentration-dependence is maximized for sgRNAs of intermediate strength (and less so for sgRNAs that induce too much or too little target depletion). sgRNA strength has not been explicitly accounted for in previous analytical methods for CRISPRi. We propose a novel method for statistical analysis of CRISPRi CGI data called CRISPRi-DR (for Dose-Response model). CRISPRi-DR incorporates data points from measurements of abundance at multiple inhibitor concentrations using a classic dose-response equation. Importantly, the effect of sgRNA strength can be incorporated into this model in a way that mimics the non-linear interaction between the two covariates on mutant abundance. We use CRISPRi-DR to re-analyze data from a recent CGI experiment in Mycobacterium tuberculosis and show that genes known to interact with various anti-tubercular drugs are ranked highly. We observe similar results in MAGeCK, a related analytical method, for datasets of low variance. However, for noisier datasets, MAGeCK is more susceptible to false positives whereas CRISPRi-DR maintains higher precision, which we observed in both empirical and simulated data, due to CRISPRi-DR’s integration of data over multiple concentrations and sgRNA strengths. Author Summary CRISPRi technology is revolutionizing research in various areas of the life sciences, including microbiology, affording the ability to partially deplete the expression of target proteins in a specific and controlled way. Among the applications of CRISPRi, it can be used to construct large (even genome-wide) libraries of knock-down mutants for profiling antibacterial inhibitors and identifying chemical-genetic interactions (CGIs), which can yield insights on drug targets and mechanisms of action and resistance. The data generated by these experiments (i.e., nucleotide barcode counts from high throughput sequencing) is voluminous and subject to various sources of noise. The goal of statistical analysis of such data is to identify significant CGIs, which are genes whose depletion sensitizes cells to an inhibitor. In this paper, we show how to incorporate both sgRNA strength and drug concentration simultaneously in a model (CRISPRi-DR) based on an extension of the classic dose-response (Hill) equation in enzymology. This model has advantages over other analytical methods for CRISPRi, which we show using empirical and simulated data." @default.
- W4385604725 created "2023-08-05" @default.
- W4385604725 creator A5034087952 @default.
- W4385604725 creator A5038161872 @default.
- W4385604725 creator A5048876954 @default.
- W4385604725 creator A5059012153 @default.
- W4385604725 creator A5077194986 @default.
- W4385604725 creator A5088779256 @default.
- W4385604725 date "2023-08-05" @default.
- W4385604725 modified "2023-09-27" @default.
- W4385604725 title "A dose-response based model for statistical analysis of chemical genetic interactions in CRISPRi libraries" @default.
- W4385604725 cites W1980361506 @default.
- W4385604725 cites W2032620844 @default.
- W4385604725 cites W2035270506 @default.
- W4385604725 cites W2069684779 @default.
- W4385604725 cites W2076163532 @default.
- W4385604725 cites W2080040321 @default.
- W4385604725 cites W2100122648 @default.
- W4385604725 cites W2112876600 @default.
- W4385604725 cites W2124243126 @default.
- W4385604725 cites W2126996122 @default.
- W4385604725 cites W2147116182 @default.
- W4385604725 cites W2150642895 @default.
- W4385604725 cites W2168856496 @default.
- W4385604725 cites W2179438025 @default.
- W4385604725 cites W2201689894 @default.
- W4385604725 cites W2407174002 @default.
- W4385604725 cites W2472021049 @default.
- W4385604725 cites W2562008485 @default.
- W4385604725 cites W2574984917 @default.
- W4385604725 cites W2586637020 @default.
- W4385604725 cites W2774959071 @default.
- W4385604725 cites W2792585392 @default.
- W4385604725 cites W2952372483 @default.
- W4385604725 cites W3100584158 @default.
- W4385604725 cites W3106677803 @default.
- W4385604725 cites W3184815001 @default.
- W4385604725 cites W3202589899 @default.
- W4385604725 cites W4206233251 @default.
- W4385604725 cites W4281631167 @default.
- W4385604725 cites W4320485716 @default.
- W4385604725 cites W4320577865 @default.
- W4385604725 doi "https://doi.org/10.1101/2023.08.03.551759" @default.
- W4385604725 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37577548" @default.
- W4385604725 hasPublicationYear "2023" @default.
- W4385604725 type Work @default.
- W4385604725 citedByCount "0" @default.
- W4385604725 crossrefType "posted-content" @default.
- W4385604725 hasAuthorship W4385604725A5034087952 @default.
- W4385604725 hasAuthorship W4385604725A5038161872 @default.
- W4385604725 hasAuthorship W4385604725A5048876954 @default.
- W4385604725 hasAuthorship W4385604725A5059012153 @default.
- W4385604725 hasAuthorship W4385604725A5077194986 @default.
- W4385604725 hasAuthorship W4385604725A5088779256 @default.
- W4385604725 hasBestOaLocation W43856047251 @default.
- W4385604725 hasConcept C104317684 @default.
- W4385604725 hasConcept C143065580 @default.
- W4385604725 hasConcept C154945302 @default.
- W4385604725 hasConcept C185592680 @default.
- W4385604725 hasConcept C186060115 @default.
- W4385604725 hasConcept C189819185 @default.
- W4385604725 hasConcept C41008148 @default.
- W4385604725 hasConcept C54355233 @default.
- W4385604725 hasConcept C64869954 @default.
- W4385604725 hasConcept C70721500 @default.
- W4385604725 hasConcept C86803240 @default.
- W4385604725 hasConcept C98108389 @default.
- W4385604725 hasConceptScore W4385604725C104317684 @default.
- W4385604725 hasConceptScore W4385604725C143065580 @default.
- W4385604725 hasConceptScore W4385604725C154945302 @default.
- W4385604725 hasConceptScore W4385604725C185592680 @default.
- W4385604725 hasConceptScore W4385604725C186060115 @default.
- W4385604725 hasConceptScore W4385604725C189819185 @default.
- W4385604725 hasConceptScore W4385604725C41008148 @default.
- W4385604725 hasConceptScore W4385604725C54355233 @default.
- W4385604725 hasConceptScore W4385604725C64869954 @default.
- W4385604725 hasConceptScore W4385604725C70721500 @default.
- W4385604725 hasConceptScore W4385604725C86803240 @default.
- W4385604725 hasConceptScore W4385604725C98108389 @default.
- W4385604725 hasLocation W43856047251 @default.
- W4385604725 hasLocation W43856047252 @default.
- W4385604725 hasOpenAccess W4385604725 @default.
- W4385604725 hasPrimaryLocation W43856047251 @default.
- W4385604725 hasRelatedWork W1869792624 @default.
- W4385604725 hasRelatedWork W2134298288 @default.
- W4385604725 hasRelatedWork W2305742620 @default.
- W4385604725 hasRelatedWork W2794852126 @default.
- W4385604725 hasRelatedWork W2896648491 @default.
- W4385604725 hasRelatedWork W2951741674 @default.
- W4385604725 hasRelatedWork W2994205747 @default.
- W4385604725 hasRelatedWork W3024338619 @default.
- W4385604725 hasRelatedWork W3024957638 @default.
- W4385604725 hasRelatedWork W4213043670 @default.
- W4385604725 isParatext "false" @default.
- W4385604725 isRetracted "false" @default.
- W4385604725 workType "article" @default.