Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385606426> ?p ?o ?g. }
- W4385606426 endingPage "5824" @default.
- W4385606426 startingPage "5824" @default.
- W4385606426 abstract "The present study introduces a novel approach employing weightless neural networks (WNN) for the detection and diagnosis of visual faults in photovoltaic (PV) modules. WNN leverages random access memory (RAM) devices to simulate the functionality of neurons. The network is trained using a flexible and efficient algorithm designed to produce consistent and precise outputs. The primary advantage of adopting WNN lies in its capacity to obviate the need for network retraining and residual generation, making it highly promising in classification and pattern recognition domains. In this study, visible faults in PV modules were captured using an unmanned aerial vehicle (UAV) equipped with a digital camera capable of capturing RGB images. The collected images underwent preprocessing and resizing before being fed as input into a pre-trained deep learning network, specifically, DenseNet-201, which performed feature extraction. Subsequently, a decision tree algorithm (J48) was employed to select the most significant features for classification. The selected features were divided into training and testing datasets that were further utilized to determine the training, test and validation accuracies of the WNN (WiSARD classifier). Hyperparameter tuning enhances WNN’s performance by achieving optimal values, maximizing classification accuracy while minimizing computational time. The obtained results indicate that the WiSARD classifier achieved a classification accuracy of 100.00% within a testing time of 1.44 s, utilizing the optimal hyperparameter settings. This study underscores the potential of WNN in efficiently and accurately diagnosing visual faults in PV modules, with implications for enhancing the reliability and performance of photovoltaic systems." @default.
- W4385606426 created "2023-08-06" @default.
- W4385606426 creator A5012549097 @default.
- W4385606426 creator A5026860322 @default.
- W4385606426 creator A5070413038 @default.
- W4385606426 creator A5084510048 @default.
- W4385606426 date "2023-08-05" @default.
- W4385606426 modified "2023-10-18" @default.
- W4385606426 title "Weightless Neural Network-Based Detection and Diagnosis of Visual Faults in Photovoltaic Modules" @default.
- W4385606426 cites W1514281749 @default.
- W4385606426 cites W1980216164 @default.
- W4385606426 cites W1995716737 @default.
- W4385606426 cites W2012028491 @default.
- W4385606426 cites W2018882088 @default.
- W4385606426 cites W2038930496 @default.
- W4385606426 cites W2072921752 @default.
- W4385606426 cites W2092669910 @default.
- W4385606426 cites W2134502076 @default.
- W4385606426 cites W2157597705 @default.
- W4385606426 cites W2171441250 @default.
- W4385606426 cites W2309444375 @default.
- W4385606426 cites W2326046929 @default.
- W4385606426 cites W2379354547 @default.
- W4385606426 cites W2467186333 @default.
- W4385606426 cites W2539370512 @default.
- W4385606426 cites W2597357256 @default.
- W4385606426 cites W2616219098 @default.
- W4385606426 cites W2619079068 @default.
- W4385606426 cites W2796210775 @default.
- W4385606426 cites W2809455469 @default.
- W4385606426 cites W2895777600 @default.
- W4385606426 cites W2911976798 @default.
- W4385606426 cites W2963060806 @default.
- W4385606426 cites W2965643259 @default.
- W4385606426 cites W2976025321 @default.
- W4385606426 cites W2980326480 @default.
- W4385606426 cites W3024846360 @default.
- W4385606426 cites W3030510540 @default.
- W4385606426 cites W3049208004 @default.
- W4385606426 cites W3089916352 @default.
- W4385606426 cites W3090941434 @default.
- W4385606426 cites W3099620610 @default.
- W4385606426 cites W3120512720 @default.
- W4385606426 cites W3134391797 @default.
- W4385606426 cites W3149306041 @default.
- W4385606426 cites W3153752852 @default.
- W4385606426 cites W3167640521 @default.
- W4385606426 cites W3183684283 @default.
- W4385606426 cites W3208601400 @default.
- W4385606426 cites W4200515712 @default.
- W4385606426 cites W4200538418 @default.
- W4385606426 cites W4200571089 @default.
- W4385606426 cites W4220760642 @default.
- W4385606426 cites W4225584684 @default.
- W4385606426 cites W4281261149 @default.
- W4385606426 cites W4281893358 @default.
- W4385606426 cites W4297201036 @default.
- W4385606426 cites W4307449372 @default.
- W4385606426 cites W4361199657 @default.
- W4385606426 cites W2899022642 @default.
- W4385606426 doi "https://doi.org/10.3390/en16155824" @default.
- W4385606426 hasPublicationYear "2023" @default.
- W4385606426 type Work @default.
- W4385606426 citedByCount "0" @default.
- W4385606426 crossrefType "journal-article" @default.
- W4385606426 hasAuthorship W4385606426A5012549097 @default.
- W4385606426 hasAuthorship W4385606426A5026860322 @default.
- W4385606426 hasAuthorship W4385606426A5070413038 @default.
- W4385606426 hasAuthorship W4385606426A5084510048 @default.
- W4385606426 hasBestOaLocation W43856064261 @default.
- W4385606426 hasConcept C119599485 @default.
- W4385606426 hasConcept C119857082 @default.
- W4385606426 hasConcept C12267149 @default.
- W4385606426 hasConcept C127413603 @default.
- W4385606426 hasConcept C153180895 @default.
- W4385606426 hasConcept C154945302 @default.
- W4385606426 hasConcept C169258074 @default.
- W4385606426 hasConcept C34736171 @default.
- W4385606426 hasConcept C41008148 @default.
- W4385606426 hasConcept C41291067 @default.
- W4385606426 hasConcept C50644808 @default.
- W4385606426 hasConcept C52001869 @default.
- W4385606426 hasConcept C52003472 @default.
- W4385606426 hasConcept C8642999 @default.
- W4385606426 hasConcept C95623464 @default.
- W4385606426 hasConceptScore W4385606426C119599485 @default.
- W4385606426 hasConceptScore W4385606426C119857082 @default.
- W4385606426 hasConceptScore W4385606426C12267149 @default.
- W4385606426 hasConceptScore W4385606426C127413603 @default.
- W4385606426 hasConceptScore W4385606426C153180895 @default.
- W4385606426 hasConceptScore W4385606426C154945302 @default.
- W4385606426 hasConceptScore W4385606426C169258074 @default.
- W4385606426 hasConceptScore W4385606426C34736171 @default.
- W4385606426 hasConceptScore W4385606426C41008148 @default.
- W4385606426 hasConceptScore W4385606426C41291067 @default.
- W4385606426 hasConceptScore W4385606426C50644808 @default.
- W4385606426 hasConceptScore W4385606426C52001869 @default.
- W4385606426 hasConceptScore W4385606426C52003472 @default.