Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385606706> ?p ?o ?g. }
- W4385606706 endingPage "68" @default.
- W4385606706 startingPage "39" @default.
- W4385606706 abstract "Abstract A key component of disaster management and infrastructure organization is predicting cumulative deformations caused by landslides. One of the critical points in predicting deformation is to consider the spatio-temporal relationships and interdependencies between the features, such as geological, geomorphological, and geospatial factors (predisposing factors). Using algorithms that create temporal and spatial connections is suggested in this study to address this important point. This study proposes a modified graph convolutional network (GCN) that incorporates a long and short-term memory (LSTM) network (GCN-LSTM) and applies it to the Moio della Civitella landslides (southern Italy) for predicting cumulative deformation. In our proposed deep learning algorithms (DLAs), two types of data are considered, the first is geological, geomorphological, and geospatial information, and the second is cumulative deformations obtained by permanent scatterer interferometry (PSI), with the first investigated as features and the second as labels and goals. This approach is divided into two processing strategies where: (a) Firstly, extracting the spatial interdependency between paired data points using the GCN regression model applied to velocity obtained by PSI and data depicting controlling predisposing factors; (b) secondly, the application of the GCN-LSTM model to predict cumulative landslide deformation (labels of DLAs) based on the correlation distance obtained through the first strategy and determination of spatio-temporal dependency. A comparative assessment of model performance illustrates that GCN-LSTM is superior and outperforms four different DLAs, including recurrent neural networks (RNNs), gated recurrent units (GRU), LSTM, and GCN-GRU. The absolute error between the real and predicted deformation is applied for validation, and in 92% of the data points, this error is lower than 4 mm." @default.
- W4385606706 created "2023-08-06" @default.
- W4385606706 creator A5015420821 @default.
- W4385606706 creator A5029752169 @default.
- W4385606706 creator A5047947553 @default.
- W4385606706 creator A5062474218 @default.
- W4385606706 creator A5072448108 @default.
- W4385606706 date "2023-08-05" @default.
- W4385606706 modified "2023-09-25" @default.
- W4385606706 title "Monitoring and prediction of landslide-related deformation based on the GCN-LSTM algorithm and SAR imagery" @default.
- W4385606706 cites W1672745209 @default.
- W4385606706 cites W186683468 @default.
- W4385606706 cites W1970302608 @default.
- W4385606706 cites W1970331803 @default.
- W4385606706 cites W1984538179 @default.
- W4385606706 cites W1990316674 @default.
- W4385606706 cites W1999545529 @default.
- W4385606706 cites W2026955971 @default.
- W4385606706 cites W2034284047 @default.
- W4385606706 cites W2047029664 @default.
- W4385606706 cites W2054141425 @default.
- W4385606706 cites W2061278901 @default.
- W4385606706 cites W2071766069 @default.
- W4385606706 cites W2079965317 @default.
- W4385606706 cites W2094811108 @default.
- W4385606706 cites W2117014758 @default.
- W4385606706 cites W2121773078 @default.
- W4385606706 cites W2131317169 @default.
- W4385606706 cites W2134955829 @default.
- W4385606706 cites W2145295698 @default.
- W4385606706 cites W2147663465 @default.
- W4385606706 cites W2227730619 @default.
- W4385606706 cites W2287278712 @default.
- W4385606706 cites W2293349767 @default.
- W4385606706 cites W2468174974 @default.
- W4385606706 cites W2509721209 @default.
- W4385606706 cites W2580219088 @default.
- W4385606706 cites W2587950680 @default.
- W4385606706 cites W2734428930 @default.
- W4385606706 cites W2736002593 @default.
- W4385606706 cites W2744351284 @default.
- W4385606706 cites W2744728920 @default.
- W4385606706 cites W2753524450 @default.
- W4385606706 cites W2767272949 @default.
- W4385606706 cites W2885195348 @default.
- W4385606706 cites W2890255671 @default.
- W4385606706 cites W2899689042 @default.
- W4385606706 cites W2917804691 @default.
- W4385606706 cites W2921093430 @default.
- W4385606706 cites W2964199361 @default.
- W4385606706 cites W2967883634 @default.
- W4385606706 cites W2972326536 @default.
- W4385606706 cites W2972534151 @default.
- W4385606706 cites W2990353568 @default.
- W4385606706 cites W2990711985 @default.
- W4385606706 cites W2994801655 @default.
- W4385606706 cites W2996451395 @default.
- W4385606706 cites W2999015335 @default.
- W4385606706 cites W3012562343 @default.
- W4385606706 cites W3016783535 @default.
- W4385606706 cites W3020454825 @default.
- W4385606706 cites W3021491793 @default.
- W4385606706 cites W3038494274 @default.
- W4385606706 cites W3041593396 @default.
- W4385606706 cites W3043578023 @default.
- W4385606706 cites W3047019821 @default.
- W4385606706 cites W3103720336 @default.
- W4385606706 cites W3105319189 @default.
- W4385606706 cites W3124881396 @default.
- W4385606706 cites W3129160733 @default.
- W4385606706 cites W3132979929 @default.
- W4385606706 cites W3133885052 @default.
- W4385606706 cites W3138633680 @default.
- W4385606706 cites W3139054774 @default.
- W4385606706 cites W3154465146 @default.
- W4385606706 cites W3155440405 @default.
- W4385606706 cites W3157368106 @default.
- W4385606706 cites W3175926635 @default.
- W4385606706 cites W3182706339 @default.
- W4385606706 cites W3196910786 @default.
- W4385606706 cites W3201556684 @default.
- W4385606706 cites W3204508881 @default.
- W4385606706 cites W3212755948 @default.
- W4385606706 cites W4200108305 @default.
- W4385606706 cites W4200490257 @default.
- W4385606706 cites W4206812703 @default.
- W4385606706 cites W4210257598 @default.
- W4385606706 cites W4211066654 @default.
- W4385606706 cites W4211128566 @default.
- W4385606706 cites W4214491547 @default.
- W4385606706 cites W4220790987 @default.
- W4385606706 cites W4220904202 @default.
- W4385606706 cites W4220974747 @default.
- W4385606706 cites W4221125467 @default.
- W4385606706 cites W4224260004 @default.
- W4385606706 cites W4224314444 @default.
- W4385606706 cites W4226326803 @default.
- W4385606706 cites W4229372223 @default.