Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385607316> ?p ?o ?g. }
- W4385607316 abstract "Abstract Background Bladder cancer (BLCA) represents a highly heterogeneous disease characterized by distinct histological, molecular, and clinical features, whose tumorigenesis and progression require aberrant metabolic reprogramming of tumor cells. However, current studies have not expounded systematically and comprehensively on the metabolic heterogeneity of BLCA. Methods The UCSC XENA portal was searched to obtain the expression profiles and clinical annotations of BLCA patients in the TCGA cohort. A total of 1,640 metabolic-related genes were downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then, consensus clustering was performed to divide the BLCA patients into two metabolic subtypes according to the expression of metabolic-related genes. Kaplan-Meier analysis was used to measure the prognostic values of the metabolic subtypes. Subsequently, comparing the immune-related characteristics between the two metabolic subtypes to describe the immunological difference. Then, the Scissor algorithm was applied to link the metabolic phenotypes and single-cell transcriptome datasets to determine the biomarkers associated with metabolic subtypes and prognosis. Finally, the clinical cohort included 63 BLCA and 16 para-cancerous samples was used to validate the prognostic value and immunological correlation of the biomarker. Results BLCA patients were classified into two heterogeneous metabolic-related subtypes (MRSs) with distinct features: MRS1, the subtype with no active metabolic characteristics but an immune infiltration microenvironment; and MRS2, the lipogenic subtype with upregulated lipid metabolism. These two subtypes had distinct prognoses, molecular subtypes distributions, and activations of therapy-related pathways. MRS1 BLCAs preferred to be immuno-suppressive and up-regulated immune checkpoints expression, suggesting the well-therapeutic response of MRS1 patients to immunotherapy. Based on the Scissor algorithm, we found that S100A7 both specifically up-regulated in the MRS1 phenotype and MRS1-tumor cells, and positively correlated with immunological characteristics. In addition, in the clinical cohort included 63 BLCA and 16 para-cancerous samples, S100A7 was obviously associated with poor prognosis and enhanced PD-L1 expression. Conclusions The metabolic subtype with S100A7 high expression recognizes the immuno-suppressive tumor microenvironment and predicts well therapeutic response of immunotherapy in BLCA. The study provides new insights into the prognostic and therapeutic value of metabolic heterogeneity in BLCA." @default.
- W4385607316 created "2023-08-06" @default.
- W4385607316 creator A5026930069 @default.
- W4385607316 creator A5043019475 @default.
- W4385607316 creator A5048111933 @default.
- W4385607316 creator A5064627383 @default.
- W4385607316 creator A5079594267 @default.
- W4385607316 creator A5082084048 @default.
- W4385607316 creator A5074081830 @default.
- W4385607316 date "2023-08-05" @default.
- W4385607316 modified "2023-10-16" @default.
- W4385607316 title "A novel metabolic subtype with S100A7 high expression represents poor prognosis and immuno-suppressive tumor microenvironment in bladder cancer" @default.
- W4385607316 cites W1483430612 @default.
- W4385607316 cites W1998166655 @default.
- W4385607316 cites W2033775272 @default.
- W4385607316 cites W2035618305 @default.
- W4385607316 cites W2044206705 @default.
- W4385607316 cites W2063632665 @default.
- W4385607316 cites W2067964015 @default.
- W4385607316 cites W2070923004 @default.
- W4385607316 cites W2084204019 @default.
- W4385607316 cites W2099951161 @default.
- W4385607316 cites W2115462905 @default.
- W4385607316 cites W2130410032 @default.
- W4385607316 cites W2130430382 @default.
- W4385607316 cites W2143926802 @default.
- W4385607316 cites W2146512944 @default.
- W4385607316 cites W2158965678 @default.
- W4385607316 cites W2159482845 @default.
- W4385607316 cites W2163941629 @default.
- W4385607316 cites W2346614284 @default.
- W4385607316 cites W2473162054 @default.
- W4385607316 cites W2530516001 @default.
- W4385607316 cites W2763053047 @default.
- W4385607316 cites W2763670669 @default.
- W4385607316 cites W2766286728 @default.
- W4385607316 cites W2782546217 @default.
- W4385607316 cites W2791111208 @default.
- W4385607316 cites W2794480084 @default.
- W4385607316 cites W2795000153 @default.
- W4385607316 cites W2800769338 @default.
- W4385607316 cites W2810358408 @default.
- W4385607316 cites W2912181843 @default.
- W4385607316 cites W2912264066 @default.
- W4385607316 cites W2916458303 @default.
- W4385607316 cites W2941036215 @default.
- W4385607316 cites W2954493501 @default.
- W4385607316 cites W2975497362 @default.
- W4385607316 cites W2984472267 @default.
- W4385607316 cites W3003593776 @default.
- W4385607316 cites W3004642442 @default.
- W4385607316 cites W3007935255 @default.
- W4385607316 cites W3009271488 @default.
- W4385607316 cites W3016135526 @default.
- W4385607316 cites W3029931347 @default.
- W4385607316 cites W3035999666 @default.
- W4385607316 cites W3080600640 @default.
- W4385607316 cites W3087464965 @default.
- W4385607316 cites W3119281926 @default.
- W4385607316 cites W3120955552 @default.
- W4385607316 cites W3130039072 @default.
- W4385607316 cites W3134393894 @default.
- W4385607316 cites W3148540143 @default.
- W4385607316 cites W3158218790 @default.
- W4385607316 cites W3163570813 @default.
- W4385607316 cites W3181206823 @default.
- W4385607316 cites W3183142599 @default.
- W4385607316 cites W3190604864 @default.
- W4385607316 cites W3192586830 @default.
- W4385607316 cites W3194627617 @default.
- W4385607316 cites W3195953296 @default.
- W4385607316 cites W3207494353 @default.
- W4385607316 cites W3211405363 @default.
- W4385607316 cites W4205798446 @default.
- W4385607316 cites W4206841660 @default.
- W4385607316 cites W4211115520 @default.
- W4385607316 cites W4213002057 @default.
- W4385607316 cites W4226369776 @default.
- W4385607316 cites W4251731689 @default.
- W4385607316 cites W4290786243 @default.
- W4385607316 cites W4294216483 @default.
- W4385607316 cites W4311277431 @default.
- W4385607316 cites W4367308534 @default.
- W4385607316 doi "https://doi.org/10.1186/s12885-023-11182-w" @default.
- W4385607316 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37543645" @default.
- W4385607316 hasPublicationYear "2023" @default.
- W4385607316 type Work @default.
- W4385607316 citedByCount "0" @default.
- W4385607316 crossrefType "journal-article" @default.
- W4385607316 hasAuthorship W4385607316A5026930069 @default.
- W4385607316 hasAuthorship W4385607316A5043019475 @default.
- W4385607316 hasAuthorship W4385607316A5048111933 @default.
- W4385607316 hasAuthorship W4385607316A5064627383 @default.
- W4385607316 hasAuthorship W4385607316A5074081830 @default.
- W4385607316 hasAuthorship W4385607316A5079594267 @default.
- W4385607316 hasAuthorship W4385607316A5082084048 @default.
- W4385607316 hasBestOaLocation W43856073161 @default.
- W4385607316 hasConcept C104317684 @default.
- W4385607316 hasConcept C121608353 @default.
- W4385607316 hasConcept C126322002 @default.