Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385611614> ?p ?o ?g. }
- W4385611614 endingPage "132828" @default.
- W4385611614 startingPage "132828" @default.
- W4385611614 abstract "In this paper, supervised machine learning techniques were employed to develop a prediction model for concrete creep at elevated temperatures. Several algorithms were considered including artificial neural networks (ANN), decision tree regression (DTR), random forest regression, linear regression and Gaussian process regression (GPR) models. A dataset of short-term, basic creep was compiled from experimental data reported in the literature for algorithm training. The selected input variables were time, temperature, 28-day compressive strength, compressive stress, fine and coarse aggregate mass, and steel and PP fiber mass. The data was split into training and verification sets, with 70% used for model training and the remaining 30% for model verification. The results demonstrate that ANN, DTR, RFR and GPR models can accurately reflect concrete creep behavior at elevated temperatures based on statistical indicators. However, further analysis showed that the GPR was the best-performing model, providing highly accurate representations of creep behaviour and demonstrating superior performance to existing empirical equations. Conversely, the DTR was found to not accurately reflect experimental data. Additionally, a Shapley additive explanation analysis was conducted that assessed the significance of each input parameter on model prediction. This research highlights the potential of machine learning techniques to accurately model high -temperature concrete creep behavior and thus represents a powerful tool for engineers and researchers." @default.
- W4385611614 created "2023-08-06" @default.
- W4385611614 creator A5019711239 @default.
- W4385611614 creator A5071291004 @default.
- W4385611614 date "2023-10-01" @default.
- W4385611614 modified "2023-10-12" @default.
- W4385611614 title "Prediction of high-temperature creep in concrete using supervised machine learning algorithms" @default.
- W4385611614 cites W1605688901 @default.
- W4385611614 cites W1925006034 @default.
- W4385611614 cites W1999449484 @default.
- W4385611614 cites W2000739321 @default.
- W4385611614 cites W2015577625 @default.
- W4385611614 cites W2017140122 @default.
- W4385611614 cites W2049869965 @default.
- W4385611614 cites W2067342011 @default.
- W4385611614 cites W2137983211 @default.
- W4385611614 cites W2150823664 @default.
- W4385611614 cites W2469450092 @default.
- W4385611614 cites W2509425124 @default.
- W4385611614 cites W2752523970 @default.
- W4385611614 cites W2772057021 @default.
- W4385611614 cites W2802659650 @default.
- W4385611614 cites W2834072840 @default.
- W4385611614 cites W2887322623 @default.
- W4385611614 cites W2910727619 @default.
- W4385611614 cites W2913247870 @default.
- W4385611614 cites W2969342271 @default.
- W4385611614 cites W3157185718 @default.
- W4385611614 cites W3169818679 @default.
- W4385611614 cites W3201282081 @default.
- W4385611614 cites W3207942183 @default.
- W4385611614 cites W3212922044 @default.
- W4385611614 cites W4200121270 @default.
- W4385611614 cites W4221125724 @default.
- W4385611614 cites W4235458000 @default.
- W4385611614 cites W4294168455 @default.
- W4385611614 cites W4308347678 @default.
- W4385611614 cites W4308748365 @default.
- W4385611614 cites W4310860989 @default.
- W4385611614 doi "https://doi.org/10.1016/j.conbuildmat.2023.132828" @default.
- W4385611614 hasPublicationYear "2023" @default.
- W4385611614 type Work @default.
- W4385611614 citedByCount "1" @default.
- W4385611614 countsByYear W43856116142023 @default.
- W4385611614 crossrefType "journal-article" @default.
- W4385611614 hasAuthorship W4385611614A5019711239 @default.
- W4385611614 hasAuthorship W4385611614A5071291004 @default.
- W4385611614 hasConcept C105795698 @default.
- W4385611614 hasConcept C11413529 @default.
- W4385611614 hasConcept C114289077 @default.
- W4385611614 hasConcept C119857082 @default.
- W4385611614 hasConcept C121332964 @default.
- W4385611614 hasConcept C149912024 @default.
- W4385611614 hasConcept C152877465 @default.
- W4385611614 hasConcept C154945302 @default.
- W4385611614 hasConcept C159985019 @default.
- W4385611614 hasConcept C163716315 @default.
- W4385611614 hasConcept C169258074 @default.
- W4385611614 hasConcept C192562407 @default.
- W4385611614 hasConcept C30407753 @default.
- W4385611614 hasConcept C33923547 @default.
- W4385611614 hasConcept C41008148 @default.
- W4385611614 hasConcept C45804977 @default.
- W4385611614 hasConcept C48921125 @default.
- W4385611614 hasConcept C50644808 @default.
- W4385611614 hasConcept C61326573 @default.
- W4385611614 hasConcept C62520636 @default.
- W4385611614 hasConcept C81692654 @default.
- W4385611614 hasConcept C83546350 @default.
- W4385611614 hasConcept C84525736 @default.
- W4385611614 hasConceptScore W4385611614C105795698 @default.
- W4385611614 hasConceptScore W4385611614C11413529 @default.
- W4385611614 hasConceptScore W4385611614C114289077 @default.
- W4385611614 hasConceptScore W4385611614C119857082 @default.
- W4385611614 hasConceptScore W4385611614C121332964 @default.
- W4385611614 hasConceptScore W4385611614C149912024 @default.
- W4385611614 hasConceptScore W4385611614C152877465 @default.
- W4385611614 hasConceptScore W4385611614C154945302 @default.
- W4385611614 hasConceptScore W4385611614C159985019 @default.
- W4385611614 hasConceptScore W4385611614C163716315 @default.
- W4385611614 hasConceptScore W4385611614C169258074 @default.
- W4385611614 hasConceptScore W4385611614C192562407 @default.
- W4385611614 hasConceptScore W4385611614C30407753 @default.
- W4385611614 hasConceptScore W4385611614C33923547 @default.
- W4385611614 hasConceptScore W4385611614C41008148 @default.
- W4385611614 hasConceptScore W4385611614C45804977 @default.
- W4385611614 hasConceptScore W4385611614C48921125 @default.
- W4385611614 hasConceptScore W4385611614C50644808 @default.
- W4385611614 hasConceptScore W4385611614C61326573 @default.
- W4385611614 hasConceptScore W4385611614C62520636 @default.
- W4385611614 hasConceptScore W4385611614C81692654 @default.
- W4385611614 hasConceptScore W4385611614C83546350 @default.
- W4385611614 hasConceptScore W4385611614C84525736 @default.
- W4385611614 hasLocation W43856116141 @default.
- W4385611614 hasOpenAccess W4385611614 @default.
- W4385611614 hasPrimaryLocation W43856116141 @default.
- W4385611614 hasRelatedWork W2056958800 @default.
- W4385611614 hasRelatedWork W2253386386 @default.