Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385612960> ?p ?o ?g. }
- W4385612960 endingPage "113399" @default.
- W4385612960 startingPage "113399" @default.
- W4385612960 abstract "An adaptation of HMM for signal segmentation is proposed. It is developed for Health Index (HI) data, which behave in different ways depending on machine condition. HI can be constant, then linearly or exponentially increasing. Knowledge of the current regime is critical for the early stage, as well as developed fault detection and RUL prognosis. The analysed data have time-varying variance/scale and noise changes from Gaussian to non-Gaussian. We initially propose an HMM with α-stable distribution and a three-parameter model. We analyse three versions of HMM: for untransformed data (model ‘G’), for detrended data (‘D’) and additionally rescaled data (‘DN’). We show that model ’D’ is sufficient to find the first change point (detection of early stage damage), while model ’G’ is the most effective for the identification of the second change point. The proposed and verified approach allows us to effectively find the borders between the segments." @default.
- W4385612960 created "2023-08-07" @default.
- W4385612960 creator A5037628069 @default.
- W4385612960 creator A5057475632 @default.
- W4385612960 creator A5073892482 @default.
- W4385612960 creator A5077454176 @default.
- W4385612960 date "2023-10-01" @default.
- W4385612960 modified "2023-10-17" @default.
- W4385612960 title "Machine condition change detection based on data segmentation using a three-regime, <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML altimg=si213.svg display=inline id=d1e2619><mml:mi>α</mml:mi></mml:math>-stable Hidden Markov Model" @default.
- W4385612960 cites W1975836976 @default.
- W4385612960 cites W1976146618 @default.
- W4385612960 cites W1996124770 @default.
- W4385612960 cites W2004136766 @default.
- W4385612960 cites W2004581801 @default.
- W4385612960 cites W2007201064 @default.
- W4385612960 cites W2007321142 @default.
- W4385612960 cites W2012160168 @default.
- W4385612960 cites W2024991751 @default.
- W4385612960 cites W2032191168 @default.
- W4385612960 cites W2038787864 @default.
- W4385612960 cites W2045186954 @default.
- W4385612960 cites W2045487031 @default.
- W4385612960 cites W2064323378 @default.
- W4385612960 cites W2077417917 @default.
- W4385612960 cites W2077514957 @default.
- W4385612960 cites W2102567944 @default.
- W4385612960 cites W2106114122 @default.
- W4385612960 cites W2114106396 @default.
- W4385612960 cites W2125838338 @default.
- W4385612960 cites W2166151355 @default.
- W4385612960 cites W2179687858 @default.
- W4385612960 cites W2303168407 @default.
- W4385612960 cites W2341144506 @default.
- W4385612960 cites W2345668847 @default.
- W4385612960 cites W2575828067 @default.
- W4385612960 cites W2605583977 @default.
- W4385612960 cites W2764433504 @default.
- W4385612960 cites W2766897814 @default.
- W4385612960 cites W2769267378 @default.
- W4385612960 cites W2773549135 @default.
- W4385612960 cites W2804815142 @default.
- W4385612960 cites W2901447599 @default.
- W4385612960 cites W2904905621 @default.
- W4385612960 cites W3006084481 @default.
- W4385612960 cites W3025787433 @default.
- W4385612960 cites W3128737925 @default.
- W4385612960 cites W3198472223 @default.
- W4385612960 cites W4206921027 @default.
- W4385612960 doi "https://doi.org/10.1016/j.measurement.2023.113399" @default.
- W4385612960 hasPublicationYear "2023" @default.
- W4385612960 type Work @default.
- W4385612960 citedByCount "2" @default.
- W4385612960 countsByYear W43856129602023 @default.
- W4385612960 crossrefType "journal-article" @default.
- W4385612960 hasAuthorship W4385612960A5037628069 @default.
- W4385612960 hasAuthorship W4385612960A5057475632 @default.
- W4385612960 hasAuthorship W4385612960A5073892482 @default.
- W4385612960 hasAuthorship W4385612960A5077454176 @default.
- W4385612960 hasConcept C11413529 @default.
- W4385612960 hasConcept C115961682 @default.
- W4385612960 hasConcept C121332964 @default.
- W4385612960 hasConcept C153180895 @default.
- W4385612960 hasConcept C154945302 @default.
- W4385612960 hasConcept C163716315 @default.
- W4385612960 hasConcept C203595873 @default.
- W4385612960 hasConcept C2778755073 @default.
- W4385612960 hasConcept C33923547 @default.
- W4385612960 hasConcept C41008148 @default.
- W4385612960 hasConcept C62520636 @default.
- W4385612960 hasConcept C89600930 @default.
- W4385612960 hasConcept C99498987 @default.
- W4385612960 hasConceptScore W4385612960C11413529 @default.
- W4385612960 hasConceptScore W4385612960C115961682 @default.
- W4385612960 hasConceptScore W4385612960C121332964 @default.
- W4385612960 hasConceptScore W4385612960C153180895 @default.
- W4385612960 hasConceptScore W4385612960C154945302 @default.
- W4385612960 hasConceptScore W4385612960C163716315 @default.
- W4385612960 hasConceptScore W4385612960C203595873 @default.
- W4385612960 hasConceptScore W4385612960C2778755073 @default.
- W4385612960 hasConceptScore W4385612960C33923547 @default.
- W4385612960 hasConceptScore W4385612960C41008148 @default.
- W4385612960 hasConceptScore W4385612960C62520636 @default.
- W4385612960 hasConceptScore W4385612960C89600930 @default.
- W4385612960 hasConceptScore W4385612960C99498987 @default.
- W4385612960 hasFunder F4320320300 @default.
- W4385612960 hasFunder F4320335039 @default.
- W4385612960 hasFunder F4320335322 @default.
- W4385612960 hasLocation W43856129601 @default.
- W4385612960 hasOpenAccess W4385612960 @default.
- W4385612960 hasPrimaryLocation W43856129601 @default.
- W4385612960 hasRelatedWork W1515964938 @default.
- W4385612960 hasRelatedWork W196800607 @default.
- W4385612960 hasRelatedWork W2073313993 @default.
- W4385612960 hasRelatedWork W2258704520 @default.
- W4385612960 hasRelatedWork W2355368334 @default.
- W4385612960 hasRelatedWork W2359428812 @default.
- W4385612960 hasRelatedWork W2376528221 @default.
- W4385612960 hasRelatedWork W2389381914 @default.