Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385613084> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4385613084 abstract "Abstract Vehicle-to-Grid (V2G) is a technology that enables electric vehicles to use smart charging methods to harness low-cost and renewable energy when it is available, and obtain income by feeding energy back into the grid. With the rise of V2G technology, the use of electric vehicles has begun to increase dramatically, which relies on the reliable Electric Vehicle Charging Pile (EVCP). However, most EVCPs are online and networked, introducing many potential network threats, such as Electricity Theft, Identity Theft and False Data Injection etc. Prior work has mostly focused on machine learning, which is not able to effectively capture the relationships and structures in network traffic, making it difficult to deal with the propagation and infection of the novel network attacks. Moreover, most neural network models collect and transfer data from EVCPs to the central server for training, which makes the central server attractive to attackers. It poses a serious threat to user privacy. To address these issues, propose an anomaly detection model that incorporates Federated Learning and Deep Autoencoder, which can increase the amount and diversity of data used to train deep learning models without compromising privacy. The proposed model forms a layer-by-layer unsupervised representation learning algorithm by autoencoder stacking, while batch normalization of hidden layers accelerates the convergence of the model to avoid overfitting and local optima, and introduces an attention mechanism to enhance key features of sequences composed of data vectors to improve the accuracy rate. To prevent the risk of user privacy leakage on the central server, EVCP is allowed to retain local data for model training and send model parameters to the central server for constructing new global models. Experimental results show that the proposed scheme achieves improved detection accuracy with superior performance than other similar models." @default.
- W4385613084 created "2023-08-07" @default.
- W4385613084 creator A5043800652 @default.
- W4385613084 creator A5065791849 @default.
- W4385613084 date "2023-08-07" @default.
- W4385613084 modified "2023-10-16" @default.
- W4385613084 title "FedEVCP: Federated Learning-Based Anomalies Detection for Electric Vehicle Charging Pile" @default.
- W4385613084 cites W2137620611 @default.
- W4385613084 cites W2743594598 @default.
- W4385613084 cites W2744999500 @default.
- W4385613084 cites W2768513834 @default.
- W4385613084 cites W2900871676 @default.
- W4385613084 cites W2975092553 @default.
- W4385613084 cites W2979434725 @default.
- W4385613084 cites W2992858528 @default.
- W4385613084 cites W3001364574 @default.
- W4385613084 cites W3004277316 @default.
- W4385613084 cites W3005009504 @default.
- W4385613084 cites W3011215978 @default.
- W4385613084 cites W3018464563 @default.
- W4385613084 cites W3082551002 @default.
- W4385613084 cites W3083064204 @default.
- W4385613084 cites W3083285969 @default.
- W4385613084 cites W3084088805 @default.
- W4385613084 cites W3092020108 @default.
- W4385613084 cites W3096590679 @default.
- W4385613084 cites W3096762368 @default.
- W4385613084 cites W3130918512 @default.
- W4385613084 cites W3153165300 @default.
- W4385613084 cites W4200261849 @default.
- W4385613084 doi "https://doi.org/10.1093/comjnl/bxad078" @default.
- W4385613084 hasPublicationYear "2023" @default.
- W4385613084 type Work @default.
- W4385613084 citedByCount "0" @default.
- W4385613084 crossrefType "journal-article" @default.
- W4385613084 hasAuthorship W4385613084A5043800652 @default.
- W4385613084 hasAuthorship W4385613084A5065791849 @default.
- W4385613084 hasConcept C101738243 @default.
- W4385613084 hasConcept C10558101 @default.
- W4385613084 hasConcept C108583219 @default.
- W4385613084 hasConcept C119857082 @default.
- W4385613084 hasConcept C150899416 @default.
- W4385613084 hasConcept C154945302 @default.
- W4385613084 hasConcept C18903297 @default.
- W4385613084 hasConcept C22019652 @default.
- W4385613084 hasConcept C41008148 @default.
- W4385613084 hasConcept C50644808 @default.
- W4385613084 hasConcept C59404180 @default.
- W4385613084 hasConcept C739882 @default.
- W4385613084 hasConcept C86803240 @default.
- W4385613084 hasConceptScore W4385613084C101738243 @default.
- W4385613084 hasConceptScore W4385613084C10558101 @default.
- W4385613084 hasConceptScore W4385613084C108583219 @default.
- W4385613084 hasConceptScore W4385613084C119857082 @default.
- W4385613084 hasConceptScore W4385613084C150899416 @default.
- W4385613084 hasConceptScore W4385613084C154945302 @default.
- W4385613084 hasConceptScore W4385613084C18903297 @default.
- W4385613084 hasConceptScore W4385613084C22019652 @default.
- W4385613084 hasConceptScore W4385613084C41008148 @default.
- W4385613084 hasConceptScore W4385613084C50644808 @default.
- W4385613084 hasConceptScore W4385613084C59404180 @default.
- W4385613084 hasConceptScore W4385613084C739882 @default.
- W4385613084 hasConceptScore W4385613084C86803240 @default.
- W4385613084 hasFunder F4320321001 @default.
- W4385613084 hasLocation W43856130841 @default.
- W4385613084 hasOpenAccess W4385613084 @default.
- W4385613084 hasPrimaryLocation W43856130841 @default.
- W4385613084 hasRelatedWork W2766433866 @default.
- W4385613084 hasRelatedWork W2960456850 @default.
- W4385613084 hasRelatedWork W3035162004 @default.
- W4385613084 hasRelatedWork W3099765033 @default.
- W4385613084 hasRelatedWork W4220996320 @default.
- W4385613084 hasRelatedWork W4224044423 @default.
- W4385613084 hasRelatedWork W4292874285 @default.
- W4385613084 hasRelatedWork W4312200629 @default.
- W4385613084 hasRelatedWork W4382286161 @default.
- W4385613084 hasRelatedWork W4386213806 @default.
- W4385613084 isParatext "false" @default.
- W4385613084 isRetracted "false" @default.
- W4385613084 workType "article" @default.