Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385616460> ?p ?o ?g. }
- W4385616460 endingPage "10" @default.
- W4385616460 startingPage "1" @default.
- W4385616460 abstract "The employment of machine learning approaches has shown promising results in predicting cancer. In the current study, polymorphisms data of five single nucleotide polymorphisms (SNPs) of DNA repair gene XRCC1 (XRCC1 399, XRCC1 194, XRCC1 206, XRCC1 632, XRCC1 280) of the north Indian population along with four smoking status data is considered as an input to the proposed ensemble model to predict the risk of individual susceptibility to the lung cancer. The prediction accuracy of the proposed ensemble model for cancer predisposition was found to be 85%. The model performance is also evaluated using sensitivity, specificity, precision and the Gini index, which is found in the range of 0.83-0.87. The proposed model also outperformed in all evaluation parameters when compared with the individual Model (LM, SVM, RF, KNN and baseline neural net). Collectively, current results suggest the potential of the proposed ensemble model in predicting the risk of cancer based on XRCC1 SNPs data.Communicated by Ramaswamy H. Sarma." @default.
- W4385616460 created "2023-08-07" @default.
- W4385616460 creator A5012738320 @default.
- W4385616460 creator A5016067866 @default.
- W4385616460 creator A5024829128 @default.
- W4385616460 creator A5040964381 @default.
- W4385616460 creator A5055671224 @default.
- W4385616460 creator A5084841926 @default.
- W4385616460 creator A5087474831 @default.
- W4385616460 creator A5090148679 @default.
- W4385616460 date "2023-08-06" @default.
- W4385616460 modified "2023-10-02" @default.
- W4385616460 title "Machine learning-based ensemble approach in prediction of lung cancer predisposition using XRCC1 gene polymorphism" @default.
- W4385616460 cites W1874927402 @default.
- W4385616460 cites W1967894483 @default.
- W4385616460 cites W1969739823 @default.
- W4385616460 cites W1999759709 @default.
- W4385616460 cites W2013599829 @default.
- W4385616460 cites W2014088484 @default.
- W4385616460 cites W2014188494 @default.
- W4385616460 cites W2024526953 @default.
- W4385616460 cites W2072023562 @default.
- W4385616460 cites W2086568618 @default.
- W4385616460 cites W2089867989 @default.
- W4385616460 cites W2106286842 @default.
- W4385616460 cites W2159403903 @default.
- W4385616460 cites W2167069196 @default.
- W4385616460 cites W2288246039 @default.
- W4385616460 cites W2292445745 @default.
- W4385616460 cites W2473611003 @default.
- W4385616460 cites W2525722968 @default.
- W4385616460 cites W2558077163 @default.
- W4385616460 cites W2599637679 @default.
- W4385616460 cites W2612292012 @default.
- W4385616460 cites W2616952103 @default.
- W4385616460 cites W2664267452 @default.
- W4385616460 cites W2755009720 @default.
- W4385616460 cites W2801769491 @default.
- W4385616460 cites W2808601429 @default.
- W4385616460 cites W2889381121 @default.
- W4385616460 cites W2897671428 @default.
- W4385616460 cites W2922844241 @default.
- W4385616460 cites W2944552054 @default.
- W4385616460 cites W2958317004 @default.
- W4385616460 cites W2969790209 @default.
- W4385616460 cites W2992152394 @default.
- W4385616460 cites W3004565805 @default.
- W4385616460 cites W3019489652 @default.
- W4385616460 cites W3125029744 @default.
- W4385616460 cites W3128646645 @default.
- W4385616460 cites W3172071874 @default.
- W4385616460 cites W4239510810 @default.
- W4385616460 cites W4296886862 @default.
- W4385616460 doi "https://doi.org/10.1080/07391102.2023.2242492" @default.
- W4385616460 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37545160" @default.
- W4385616460 hasPublicationYear "2023" @default.
- W4385616460 type Work @default.
- W4385616460 citedByCount "0" @default.
- W4385616460 crossrefType "journal-article" @default.
- W4385616460 hasAuthorship W4385616460A5012738320 @default.
- W4385616460 hasAuthorship W4385616460A5016067866 @default.
- W4385616460 hasAuthorship W4385616460A5024829128 @default.
- W4385616460 hasAuthorship W4385616460A5040964381 @default.
- W4385616460 hasAuthorship W4385616460A5055671224 @default.
- W4385616460 hasAuthorship W4385616460A5084841926 @default.
- W4385616460 hasAuthorship W4385616460A5087474831 @default.
- W4385616460 hasAuthorship W4385616460A5090148679 @default.
- W4385616460 hasConcept C104317684 @default.
- W4385616460 hasConcept C119857082 @default.
- W4385616460 hasConcept C135763542 @default.
- W4385616460 hasConcept C143998085 @default.
- W4385616460 hasConcept C153209595 @default.
- W4385616460 hasConcept C154945302 @default.
- W4385616460 hasConcept C2776256026 @default.
- W4385616460 hasConcept C2776999993 @default.
- W4385616460 hasConcept C2779372377 @default.
- W4385616460 hasConcept C2908647359 @default.
- W4385616460 hasConcept C41008148 @default.
- W4385616460 hasConcept C54355233 @default.
- W4385616460 hasConcept C71924100 @default.
- W4385616460 hasConcept C86803240 @default.
- W4385616460 hasConcept C99454951 @default.
- W4385616460 hasConceptScore W4385616460C104317684 @default.
- W4385616460 hasConceptScore W4385616460C119857082 @default.
- W4385616460 hasConceptScore W4385616460C135763542 @default.
- W4385616460 hasConceptScore W4385616460C143998085 @default.
- W4385616460 hasConceptScore W4385616460C153209595 @default.
- W4385616460 hasConceptScore W4385616460C154945302 @default.
- W4385616460 hasConceptScore W4385616460C2776256026 @default.
- W4385616460 hasConceptScore W4385616460C2776999993 @default.
- W4385616460 hasConceptScore W4385616460C2779372377 @default.
- W4385616460 hasConceptScore W4385616460C2908647359 @default.
- W4385616460 hasConceptScore W4385616460C41008148 @default.
- W4385616460 hasConceptScore W4385616460C54355233 @default.
- W4385616460 hasConceptScore W4385616460C71924100 @default.
- W4385616460 hasConceptScore W4385616460C86803240 @default.
- W4385616460 hasConceptScore W4385616460C99454951 @default.
- W4385616460 hasLocation W43856164601 @default.