Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385619613> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4385619613 endingPage "28" @default.
- W4385619613 startingPage "16" @default.
- W4385619613 abstract "According to cancer reports from the past few years in India, thirty percent of instances are breast cancer, and furthermore, it is possible that this percentage would increase in the near future. In addition, one woman is given a diagnosis every two minutes, and another woman passes away every nine minutes as a result of her condition. People who are diagnosed with cancer at an earlier stage have a better chance of survival. Micro calcifications are one of the most important symptoms to look out for when trying to diagnose breast cancer in its earlier stages. Several scientific investigations have been carried out in an effort to combat this illness, for which techniques related to machine learning can be utilized to a significant extent. Particle swarm optimization, often known as PSO, is acknowledged as one of several effective and promising methods for identifying breast cancer. This method helps medical professionals administer treatment that is both timely and appropriate. The weighted particle swarm optimization (WPSO) approach is utilized in this work for the purpose of extracting textural information from the segmented mammography picture for the purpose of classifying micro calcifications as normal, benign, or malignant, hence increasing the accuracy. A portion of the cancerous growth is removed from the breast region using optimizing techniques. In this article, Convolutional Neural Networks (CNNs) are presented for the purpose of identifying breast cancer in order to cut down on the amount of manual overhead. The CNN framework is built in order to extract features as effectively as possible. This algorithm was developed to identify areas in mammograms (MG) that are suspicious for cancer and to classify those areas as normal or abnormal as quickly as possible. This model makes use of MG pictures that were gathered from a variety of hospitals in the surrounding area." @default.
- W4385619613 created "2023-08-08" @default.
- W4385619613 creator A5041901116 @default.
- W4385619613 creator A5053189825 @default.
- W4385619613 creator A5074076669 @default.
- W4385619613 date "2023-01-01" @default.
- W4385619613 modified "2023-10-16" @default.
- W4385619613 title "Detection of Breast Cancer Based on Feature Extraction Using WPSO in Conjunction with CNN" @default.
- W4385619613 doi "https://doi.org/10.54216/jaim.050102" @default.
- W4385619613 hasPublicationYear "2023" @default.
- W4385619613 type Work @default.
- W4385619613 citedByCount "0" @default.
- W4385619613 crossrefType "journal-article" @default.
- W4385619613 hasAuthorship W4385619613A5041901116 @default.
- W4385619613 hasAuthorship W4385619613A5053189825 @default.
- W4385619613 hasAuthorship W4385619613A5074076669 @default.
- W4385619613 hasConcept C111919701 @default.
- W4385619613 hasConcept C119857082 @default.
- W4385619613 hasConcept C121608353 @default.
- W4385619613 hasConcept C126322002 @default.
- W4385619613 hasConcept C138885662 @default.
- W4385619613 hasConcept C146357865 @default.
- W4385619613 hasConcept C151730666 @default.
- W4385619613 hasConcept C153180895 @default.
- W4385619613 hasConcept C154945302 @default.
- W4385619613 hasConcept C2776401178 @default.
- W4385619613 hasConcept C2779960059 @default.
- W4385619613 hasConcept C2780472235 @default.
- W4385619613 hasConcept C41008148 @default.
- W4385619613 hasConcept C41895202 @default.
- W4385619613 hasConcept C50644808 @default.
- W4385619613 hasConcept C530470458 @default.
- W4385619613 hasConcept C71924100 @default.
- W4385619613 hasConcept C81363708 @default.
- W4385619613 hasConcept C85617194 @default.
- W4385619613 hasConcept C86803240 @default.
- W4385619613 hasConceptScore W4385619613C111919701 @default.
- W4385619613 hasConceptScore W4385619613C119857082 @default.
- W4385619613 hasConceptScore W4385619613C121608353 @default.
- W4385619613 hasConceptScore W4385619613C126322002 @default.
- W4385619613 hasConceptScore W4385619613C138885662 @default.
- W4385619613 hasConceptScore W4385619613C146357865 @default.
- W4385619613 hasConceptScore W4385619613C151730666 @default.
- W4385619613 hasConceptScore W4385619613C153180895 @default.
- W4385619613 hasConceptScore W4385619613C154945302 @default.
- W4385619613 hasConceptScore W4385619613C2776401178 @default.
- W4385619613 hasConceptScore W4385619613C2779960059 @default.
- W4385619613 hasConceptScore W4385619613C2780472235 @default.
- W4385619613 hasConceptScore W4385619613C41008148 @default.
- W4385619613 hasConceptScore W4385619613C41895202 @default.
- W4385619613 hasConceptScore W4385619613C50644808 @default.
- W4385619613 hasConceptScore W4385619613C530470458 @default.
- W4385619613 hasConceptScore W4385619613C71924100 @default.
- W4385619613 hasConceptScore W4385619613C81363708 @default.
- W4385619613 hasConceptScore W4385619613C85617194 @default.
- W4385619613 hasConceptScore W4385619613C86803240 @default.
- W4385619613 hasIssue "1" @default.
- W4385619613 hasLocation W43856196131 @default.
- W4385619613 hasOpenAccess W4385619613 @default.
- W4385619613 hasPrimaryLocation W43856196131 @default.
- W4385619613 hasRelatedWork W2295021132 @default.
- W4385619613 hasRelatedWork W2767651786 @default.
- W4385619613 hasRelatedWork W2886673456 @default.
- W4385619613 hasRelatedWork W2912288872 @default.
- W4385619613 hasRelatedWork W3021430260 @default.
- W4385619613 hasRelatedWork W3027997911 @default.
- W4385619613 hasRelatedWork W3106036237 @default.
- W4385619613 hasRelatedWork W4205775020 @default.
- W4385619613 hasRelatedWork W4287776258 @default.
- W4385619613 hasRelatedWork W564581980 @default.
- W4385619613 hasVolume "5" @default.
- W4385619613 isParatext "false" @default.
- W4385619613 isRetracted "false" @default.
- W4385619613 workType "article" @default.