Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385619824> ?p ?o ?g. }
- W4385619824 endingPage "177" @default.
- W4385619824 startingPage "171" @default.
- W4385619824 abstract "When learners fail to reach milestones, educators often wonder if any warning signs could have allowed them to intervene sooner. Machine learning can predict which students are at risk for failing a high-stakes certification examination. If predictions can be made well before the examination, educators can meaningfully intervene before students take the examination to reduce their chances of failing.The authors used already-collected, first-year student assessment data from 5 cohorts in a single Master of Physician Assistant Studies program to implement an adaptive minimum match version of the k-nearest neighbors algorithm using changing numbers of neighbors to predict each student's future examination scores on the Physician Assistant National Certifying Exam (PANCE). Validation occurred in 2 ways by using leave-one-out cross-validation (LOOCV) and by evaluating predictions in a new cohort.Adaptive minimum match version of the k-nearest neighbors algorithm achieved an accuracy of 93% in LOOCV. Adaptive minimum match version of the k-nearest neighbors algorithm generates a predicted PANCE score for each student one year before they take the examination. Students are classified into extra support, optional extra support, or no extra support categories. Then, one year remains to provide appropriate support to each category of student.Predictive analytics can identify at-risk students who might need additional support or remediation before high-stakes certification examinations. Educators can use the included methods and code to generate predicted test outcomes for students. The authors recommend that educators use predictive modeling responsibly and transparently, as one of many tools used to support students. More research is needed to test alternative machine learning methods across a variety of educational programs." @default.
- W4385619824 created "2023-08-08" @default.
- W4385619824 creator A5011936649 @default.
- W4385619824 creator A5054159201 @default.
- W4385619824 creator A5085596646 @default.
- W4385619824 creator A5092607413 @default.
- W4385619824 date "2023-08-04" @default.
- W4385619824 modified "2023-10-17" @default.
- W4385619824 title "The Application of Adaptive Minimum Match k-Nearest Neighbors to Identify At-Risk Students in Health Professions Education" @default.
- W4385619824 cites W2049868504 @default.
- W4385619824 cites W2064983739 @default.
- W4385619824 cites W2096195258 @default.
- W4385619824 cites W2096452841 @default.
- W4385619824 cites W2123588338 @default.
- W4385619824 cites W2147263342 @default.
- W4385619824 cites W2167507251 @default.
- W4385619824 cites W2315848270 @default.
- W4385619824 cites W2322996811 @default.
- W4385619824 cites W2323489188 @default.
- W4385619824 cites W2324086501 @default.
- W4385619824 cites W2337831406 @default.
- W4385619824 cites W2606704687 @default.
- W4385619824 cites W2920604814 @default.
- W4385619824 cites W2939970150 @default.
- W4385619824 cites W2940541316 @default.
- W4385619824 cites W2966447025 @default.
- W4385619824 cites W2966741169 @default.
- W4385619824 cites W2974089311 @default.
- W4385619824 cites W2982623704 @default.
- W4385619824 cites W2982725252 @default.
- W4385619824 cites W2983382509 @default.
- W4385619824 cites W3010029324 @default.
- W4385619824 cites W3097948114 @default.
- W4385619824 cites W3100638881 @default.
- W4385619824 cites W3125170355 @default.
- W4385619824 cites W3129947429 @default.
- W4385619824 cites W3131346895 @default.
- W4385619824 cites W3175258031 @default.
- W4385619824 cites W3187352571 @default.
- W4385619824 cites W4212899066 @default.
- W4385619824 cites W4225648167 @default.
- W4385619824 doi "https://doi.org/10.1097/jpa.0000000000000513" @default.
- W4385619824 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37548617" @default.
- W4385619824 hasPublicationYear "2023" @default.
- W4385619824 type Work @default.
- W4385619824 citedByCount "0" @default.
- W4385619824 crossrefType "journal-article" @default.
- W4385619824 hasAuthorship W4385619824A5011936649 @default.
- W4385619824 hasAuthorship W4385619824A5054159201 @default.
- W4385619824 hasAuthorship W4385619824A5085596646 @default.
- W4385619824 hasAuthorship W4385619824A5092607413 @default.
- W4385619824 hasBestOaLocation W43856198242 @default.
- W4385619824 hasConcept C119857082 @default.
- W4385619824 hasConcept C144352353 @default.
- W4385619824 hasConcept C145420912 @default.
- W4385619824 hasConcept C151730666 @default.
- W4385619824 hasConcept C15744967 @default.
- W4385619824 hasConcept C171606756 @default.
- W4385619824 hasConcept C17744445 @default.
- W4385619824 hasConcept C199539241 @default.
- W4385619824 hasConcept C2777267654 @default.
- W4385619824 hasConcept C41008148 @default.
- W4385619824 hasConcept C46304622 @default.
- W4385619824 hasConcept C509550671 @default.
- W4385619824 hasConcept C70410870 @default.
- W4385619824 hasConcept C71924100 @default.
- W4385619824 hasConcept C83209312 @default.
- W4385619824 hasConcept C86803240 @default.
- W4385619824 hasConceptScore W4385619824C119857082 @default.
- W4385619824 hasConceptScore W4385619824C144352353 @default.
- W4385619824 hasConceptScore W4385619824C145420912 @default.
- W4385619824 hasConceptScore W4385619824C151730666 @default.
- W4385619824 hasConceptScore W4385619824C15744967 @default.
- W4385619824 hasConceptScore W4385619824C171606756 @default.
- W4385619824 hasConceptScore W4385619824C17744445 @default.
- W4385619824 hasConceptScore W4385619824C199539241 @default.
- W4385619824 hasConceptScore W4385619824C2777267654 @default.
- W4385619824 hasConceptScore W4385619824C41008148 @default.
- W4385619824 hasConceptScore W4385619824C46304622 @default.
- W4385619824 hasConceptScore W4385619824C509550671 @default.
- W4385619824 hasConceptScore W4385619824C70410870 @default.
- W4385619824 hasConceptScore W4385619824C71924100 @default.
- W4385619824 hasConceptScore W4385619824C83209312 @default.
- W4385619824 hasConceptScore W4385619824C86803240 @default.
- W4385619824 hasIssue "3" @default.
- W4385619824 hasLocation W43856198241 @default.
- W4385619824 hasLocation W43856198242 @default.
- W4385619824 hasLocation W43856198243 @default.
- W4385619824 hasLocation W43856198244 @default.
- W4385619824 hasLocation W43856198245 @default.
- W4385619824 hasOpenAccess W4385619824 @default.
- W4385619824 hasPrimaryLocation W43856198241 @default.
- W4385619824 hasRelatedWork W1540608021 @default.
- W4385619824 hasRelatedWork W1967937306 @default.
- W4385619824 hasRelatedWork W2012843675 @default.
- W4385619824 hasRelatedWork W226604446 @default.
- W4385619824 hasRelatedWork W2953421802 @default.
- W4385619824 hasRelatedWork W3021300720 @default.